Macrowine 2021
IVES 9 IVES Conference Series 9 A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

Abstract

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”. Biotechnological products are now available for effective antimicrobial actions. Lysozyme inhibits the lactic acid bacteria. Chitosan also acts on the lactic acid bacteria but also efficiently on Brettanomyces. Acid sorbic can be a help to control the development of the undesirable strains yeast strains. On the antioxidant effect oak wood could potentially play a protective role. The development of an electrochemical sensor was used to estimate the influence of different cooperage factors on the antioxydant capacity(CaOx)suitable to be transmit by the wood at the wine. For red wines, during two successive vintages in two different wineries, tests compared classical post-MLF SO2 additions (5 g/hL) in classic new barrels to a treatment with a mixture of lysozyme and chitosan in CaOx optimized barrels. Microbiological monitoring has been done like chemical assays and wines tasted by expert panels. Barrels were also fitted with an innovative device allowing to measure dissolved oxygen without to have to open the barrel. In two different “Sauternes” wineries, test have been done to compare a classic mutage (between 10 and 25 g/hL of SO2) in classic barrels to a half a dose of SO2 and adding a supplement chitosan and sorbic acid in in CaOx optimized barrels. The impact on the microbial flora were investigated as well as the impact on the quality of wine. The innovative device for measuring dissolved oxygen was also used. All these wines were followed until the end of the harvest of breeding, ie on breeding periods of 6-18 months to understand the stability over time of the results. The results show that the test wines are microbiologically more stable than control wines. In the most of the case, always for the wine experiments and often for the “liqoureux”, the dissolved oxygen levels are also lower. Some metabolites (volatile phenols, diacetyl, and acetaldehyde) are less concentrated and colors are more intense and more stable. At the end, the combination of biotechnology tools and CAOX appears of a very efficient has emerged as a very effective technique to reduce the amount of total SO2 in wine as currently requested by consumers and by legislators.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Vincent Renouf*, Marie Mirabel

*Chêne & Cie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.