Macrowine 2021
IVES 9 IVES Conference Series 9 A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

Abstract

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”. Biotechnological products are now available for effective antimicrobial actions. Lysozyme inhibits the lactic acid bacteria. Chitosan also acts on the lactic acid bacteria but also efficiently on Brettanomyces. Acid sorbic can be a help to control the development of the undesirable strains yeast strains. On the antioxidant effect oak wood could potentially play a protective role. The development of an electrochemical sensor was used to estimate the influence of different cooperage factors on the antioxydant capacity(CaOx)suitable to be transmit by the wood at the wine. For red wines, during two successive vintages in two different wineries, tests compared classical post-MLF SO2 additions (5 g/hL) in classic new barrels to a treatment with a mixture of lysozyme and chitosan in CaOx optimized barrels. Microbiological monitoring has been done like chemical assays and wines tasted by expert panels. Barrels were also fitted with an innovative device allowing to measure dissolved oxygen without to have to open the barrel. In two different “Sauternes” wineries, test have been done to compare a classic mutage (between 10 and 25 g/hL of SO2) in classic barrels to a half a dose of SO2 and adding a supplement chitosan and sorbic acid in in CaOx optimized barrels. The impact on the microbial flora were investigated as well as the impact on the quality of wine. The innovative device for measuring dissolved oxygen was also used. All these wines were followed until the end of the harvest of breeding, ie on breeding periods of 6-18 months to understand the stability over time of the results. The results show that the test wines are microbiologically more stable than control wines. In the most of the case, always for the wine experiments and often for the “liqoureux”, the dissolved oxygen levels are also lower. Some metabolites (volatile phenols, diacetyl, and acetaldehyde) are less concentrated and colors are more intense and more stable. At the end, the combination of biotechnology tools and CAOX appears of a very efficient has emerged as a very effective technique to reduce the amount of total SO2 in wine as currently requested by consumers and by legislators.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Vincent Renouf*, Marie Mirabel

*Chêne & Cie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.