Macrowine 2021
IVES 9 IVES Conference Series 9 Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Abstract

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2). The capacity of inhibition of adrenaline auto-oxidation for 38 wine polyphenols, ascorbic acid and Trolox was studied. Stock solutions of compounds in ethanol were prepared. Reaction mixtures containing 20 μL of sample, 20 µL of adrenaline solution (1mM, dissolve in distilled water) and 300 µl carbonate buffer (0.2 M, pH 10.55) were incubated at 36.6°C during 10 min. The absorbance of the resulting solution was measured at 347 nm using a BGM FLUOstar Omega plate reader. Absorbencies of samples in carbonate buffer (blank sample) and adrenaline in carbonate buffer under the same conditions were determined. Adrenaline auto-oxidation inhibition capacity (in %) was calculated as [(A-AE)/A] × 100, where A – absorbance of adrenalin in carbonate buffer, AE – difference between absorbance of the reaction mixture and absorbance of blank sample. In case when A < AE it was considered that the sample has pro-oxidant capacity. Various phenolic acids reacted quite differently. Chlorogenic acid had only a pro-oxidant action in the reactions of adrenalin auto-oxidation. Gallic acid showed the most antioxidant capacity (55.1%, in molar ratio 1:0.5, adrenaline/compound) among other tested phenolic acids. Ascorbic acid and Trolox inhibited the auto-oxidation of adrenaline to 51.4% and 8.99% respectively. Epigallocatechin and kaempferol have the most of inhibitory capacity (78.7% and 75.1%, respectively, at a molar ratio 1:0.5, adrenaline/compound) among other flavonoids aglycons. Adrenaline auto-oxidation inhibition capacity increased in the glycosylation of flavonoids. For example, the antioxidant activity of quercetin was 11.7% and rutin was 42.8%. with a molar ratio 1:1 for both. The results have shown that the antioxidant capacity decreased and prooxydant activity increased when reducing the number of hydroxy groups and increasing the amount of methyl groups in the structure of polyphenol.

References 1. Gülçin, İ. (2009) Antioxidant activity of L-adrenaline: A structure–activity insight. Chemico-Biological Interactions, 179, P. 71–80. 2. Sirota, T. V. (2011) A Novel Approach to Study the Reaction of Adrenaline Autooxidation: a Possibility for Polarographic Determination of Superoxide Dismutase Activity and Antioxidant Properties of Various Preparations. Biochemistry (Moscow) Suppl. Series B. Vol. 5 (3), P. 253–259.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Natallia Kolbas*, Michael Jourdes, Pierre-Louis Teissedre

*UMR 1219 OEnologie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.