Macrowine 2021
IVES 9 IVES Conference Series 9 Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Abstract

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2). The capacity of inhibition of adrenaline auto-oxidation for 38 wine polyphenols, ascorbic acid and Trolox was studied. Stock solutions of compounds in ethanol were prepared. Reaction mixtures containing 20 μL of sample, 20 µL of adrenaline solution (1mM, dissolve in distilled water) and 300 µl carbonate buffer (0.2 M, pH 10.55) were incubated at 36.6°C during 10 min. The absorbance of the resulting solution was measured at 347 nm using a BGM FLUOstar Omega plate reader. Absorbencies of samples in carbonate buffer (blank sample) and adrenaline in carbonate buffer under the same conditions were determined. Adrenaline auto-oxidation inhibition capacity (in %) was calculated as [(A-AE)/A] × 100, where A – absorbance of adrenalin in carbonate buffer, AE – difference between absorbance of the reaction mixture and absorbance of blank sample. In case when A < AE it was considered that the sample has pro-oxidant capacity. Various phenolic acids reacted quite differently. Chlorogenic acid had only a pro-oxidant action in the reactions of adrenalin auto-oxidation. Gallic acid showed the most antioxidant capacity (55.1%, in molar ratio 1:0.5, adrenaline/compound) among other tested phenolic acids. Ascorbic acid and Trolox inhibited the auto-oxidation of adrenaline to 51.4% and 8.99% respectively. Epigallocatechin and kaempferol have the most of inhibitory capacity (78.7% and 75.1%, respectively, at a molar ratio 1:0.5, adrenaline/compound) among other flavonoids aglycons. Adrenaline auto-oxidation inhibition capacity increased in the glycosylation of flavonoids. For example, the antioxidant activity of quercetin was 11.7% and rutin was 42.8%. with a molar ratio 1:1 for both. The results have shown that the antioxidant capacity decreased and prooxydant activity increased when reducing the number of hydroxy groups and increasing the amount of methyl groups in the structure of polyphenol.

References 1. Gülçin, İ. (2009) Antioxidant activity of L-adrenaline: A structure–activity insight. Chemico-Biological Interactions, 179, P. 71–80. 2. Sirota, T. V. (2011) A Novel Approach to Study the Reaction of Adrenaline Autooxidation: a Possibility for Polarographic Determination of Superoxide Dismutase Activity and Antioxidant Properties of Various Preparations. Biochemistry (Moscow) Suppl. Series B. Vol. 5 (3), P. 253–259.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Natallia Kolbas*, Michael Jourdes, Pierre-Louis Teissedre

*UMR 1219 OEnologie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.