Macrowine 2021
IVES 9 IVES Conference Series 9 Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Abstract

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2). The capacity of inhibition of adrenaline auto-oxidation for 38 wine polyphenols, ascorbic acid and Trolox was studied. Stock solutions of compounds in ethanol were prepared. Reaction mixtures containing 20 μL of sample, 20 µL of adrenaline solution (1mM, dissolve in distilled water) and 300 µl carbonate buffer (0.2 M, pH 10.55) were incubated at 36.6°C during 10 min. The absorbance of the resulting solution was measured at 347 nm using a BGM FLUOstar Omega plate reader. Absorbencies of samples in carbonate buffer (blank sample) and adrenaline in carbonate buffer under the same conditions were determined. Adrenaline auto-oxidation inhibition capacity (in %) was calculated as [(A-AE)/A] × 100, where A – absorbance of adrenalin in carbonate buffer, AE – difference between absorbance of the reaction mixture and absorbance of blank sample. In case when A < AE it was considered that the sample has pro-oxidant capacity. Various phenolic acids reacted quite differently. Chlorogenic acid had only a pro-oxidant action in the reactions of adrenalin auto-oxidation. Gallic acid showed the most antioxidant capacity (55.1%, in molar ratio 1:0.5, adrenaline/compound) among other tested phenolic acids. Ascorbic acid and Trolox inhibited the auto-oxidation of adrenaline to 51.4% and 8.99% respectively. Epigallocatechin and kaempferol have the most of inhibitory capacity (78.7% and 75.1%, respectively, at a molar ratio 1:0.5, adrenaline/compound) among other flavonoids aglycons. Adrenaline auto-oxidation inhibition capacity increased in the glycosylation of flavonoids. For example, the antioxidant activity of quercetin was 11.7% and rutin was 42.8%. with a molar ratio 1:1 for both. The results have shown that the antioxidant capacity decreased and prooxydant activity increased when reducing the number of hydroxy groups and increasing the amount of methyl groups in the structure of polyphenol.

References 1. Gülçin, İ. (2009) Antioxidant activity of L-adrenaline: A structure–activity insight. Chemico-Biological Interactions, 179, P. 71–80. 2. Sirota, T. V. (2011) A Novel Approach to Study the Reaction of Adrenaline Autooxidation: a Possibility for Polarographic Determination of Superoxide Dismutase Activity and Antioxidant Properties of Various Preparations. Biochemistry (Moscow) Suppl. Series B. Vol. 5 (3), P. 253–259.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Natallia Kolbas*, Michael Jourdes, Pierre-Louis Teissedre

*UMR 1219 OEnologie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.