Macrowine 2021
IVES 9 IVES Conference Series 9 Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Abstract

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2). The capacity of inhibition of adrenaline auto-oxidation for 38 wine polyphenols, ascorbic acid and Trolox was studied. Stock solutions of compounds in ethanol were prepared. Reaction mixtures containing 20 μL of sample, 20 µL of adrenaline solution (1mM, dissolve in distilled water) and 300 µl carbonate buffer (0.2 M, pH 10.55) were incubated at 36.6°C during 10 min. The absorbance of the resulting solution was measured at 347 nm using a BGM FLUOstar Omega plate reader. Absorbencies of samples in carbonate buffer (blank sample) and adrenaline in carbonate buffer under the same conditions were determined. Adrenaline auto-oxidation inhibition capacity (in %) was calculated as [(A-AE)/A] × 100, where A – absorbance of adrenalin in carbonate buffer, AE – difference between absorbance of the reaction mixture and absorbance of blank sample. In case when A < AE it was considered that the sample has pro-oxidant capacity. Various phenolic acids reacted quite differently. Chlorogenic acid had only a pro-oxidant action in the reactions of adrenalin auto-oxidation. Gallic acid showed the most antioxidant capacity (55.1%, in molar ratio 1:0.5, adrenaline/compound) among other tested phenolic acids. Ascorbic acid and Trolox inhibited the auto-oxidation of adrenaline to 51.4% and 8.99% respectively. Epigallocatechin and kaempferol have the most of inhibitory capacity (78.7% and 75.1%, respectively, at a molar ratio 1:0.5, adrenaline/compound) among other flavonoids aglycons. Adrenaline auto-oxidation inhibition capacity increased in the glycosylation of flavonoids. For example, the antioxidant activity of quercetin was 11.7% and rutin was 42.8%. with a molar ratio 1:1 for both. The results have shown that the antioxidant capacity decreased and prooxydant activity increased when reducing the number of hydroxy groups and increasing the amount of methyl groups in the structure of polyphenol.

References 1. Gülçin, İ. (2009) Antioxidant activity of L-adrenaline: A structure–activity insight. Chemico-Biological Interactions, 179, P. 71–80. 2. Sirota, T. V. (2011) A Novel Approach to Study the Reaction of Adrenaline Autooxidation: a Possibility for Polarographic Determination of Superoxide Dismutase Activity and Antioxidant Properties of Various Preparations. Biochemistry (Moscow) Suppl. Series B. Vol. 5 (3), P. 253–259.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Natallia Kolbas*, Michael Jourdes, Pierre-Louis Teissedre

*UMR 1219 OEnologie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.