Macrowine 2021
IVES 9 IVES Conference Series 9 Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Abstract

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2). The capacity of inhibition of adrenaline auto-oxidation for 38 wine polyphenols, ascorbic acid and Trolox was studied. Stock solutions of compounds in ethanol were prepared. Reaction mixtures containing 20 μL of sample, 20 µL of adrenaline solution (1mM, dissolve in distilled water) and 300 µl carbonate buffer (0.2 M, pH 10.55) were incubated at 36.6°C during 10 min. The absorbance of the resulting solution was measured at 347 nm using a BGM FLUOstar Omega plate reader. Absorbencies of samples in carbonate buffer (blank sample) and adrenaline in carbonate buffer under the same conditions were determined. Adrenaline auto-oxidation inhibition capacity (in %) was calculated as [(A-AE)/A] × 100, where A – absorbance of adrenalin in carbonate buffer, AE – difference between absorbance of the reaction mixture and absorbance of blank sample. In case when A < AE it was considered that the sample has pro-oxidant capacity. Various phenolic acids reacted quite differently. Chlorogenic acid had only a pro-oxidant action in the reactions of adrenalin auto-oxidation. Gallic acid showed the most antioxidant capacity (55.1%, in molar ratio 1:0.5, adrenaline/compound) among other tested phenolic acids. Ascorbic acid and Trolox inhibited the auto-oxidation of adrenaline to 51.4% and 8.99% respectively. Epigallocatechin and kaempferol have the most of inhibitory capacity (78.7% and 75.1%, respectively, at a molar ratio 1:0.5, adrenaline/compound) among other flavonoids aglycons. Adrenaline auto-oxidation inhibition capacity increased in the glycosylation of flavonoids. For example, the antioxidant activity of quercetin was 11.7% and rutin was 42.8%. with a molar ratio 1:1 for both. The results have shown that the antioxidant capacity decreased and prooxydant activity increased when reducing the number of hydroxy groups and increasing the amount of methyl groups in the structure of polyphenol.

References 1. Gülçin, İ. (2009) Antioxidant activity of L-adrenaline: A structure–activity insight. Chemico-Biological Interactions, 179, P. 71–80. 2. Sirota, T. V. (2011) A Novel Approach to Study the Reaction of Adrenaline Autooxidation: a Possibility for Polarographic Determination of Superoxide Dismutase Activity and Antioxidant Properties of Various Preparations. Biochemistry (Moscow) Suppl. Series B. Vol. 5 (3), P. 253–259.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Natallia Kolbas*, Michael Jourdes, Pierre-Louis Teissedre

*UMR 1219 OEnologie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.