Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Abstract

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties. This molecule is highly reactive and can form strong associations (alkylhydroxy sulfonates) with aldehydes. Levels of SO2 present in the alcoholic fermentation could then, at least theoretically, prevent the reduction of aldehydes to alcohols. Aldehydes could accumulate under the form of non-volatile adducts which could be released back once SO2 levels drop with aging or oxidation contributing to the development of oxidation off-odors (3). A set-up of fermentations of synthetic must containing known content of amino acids and nitrogen sources as well as elements necessary to the yeast metabolism were prepared. Different levels of Zinc or SO2 were tested. Three different commercial Saccharomyces cereviase yeast strains were selected for fermentation. Fusel alcohols and Strecker aldehydes were determined in the finished wines by GC-FID and GC-MS, respectively. Results confirm that all the factors are significant and that must Zn and SO2 levels influence the presence of Strecker aldehydes in the final wine.

1. Hazelwood, L. A.; Daran, J. M.; van Maris, A. J.; Pronk, J. T.; Dickinson, J. R., The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 2008, 74, 2259-66. 2. Singh, R.; Kunkee, R. E., Alcohol Dehydrogenase Activities of Wine Yeasts in Relation to Higher Alcohol Formation. Applied and Environmental Microbiology 1976, 32, 666 – 670. 3. Bueno, M.; Franco-Luesma, E.; Carrascon, V.; Ferreira, V., Evaluation of key and bound aroma carbonyls in wine for a better understanding of their release or formation through oxidation. Flavour Science. Proceedings of the XIV Weurman Flavour Research Symposium 2015, 397-402.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Inês Oliveira*, Mónica Bueno, Purificación Hernández-Orte, Vicente Ferreira

*University of Zaragoza

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.