Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Abstract

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties. This molecule is highly reactive and can form strong associations (alkylhydroxy sulfonates) with aldehydes. Levels of SO2 present in the alcoholic fermentation could then, at least theoretically, prevent the reduction of aldehydes to alcohols. Aldehydes could accumulate under the form of non-volatile adducts which could be released back once SO2 levels drop with aging or oxidation contributing to the development of oxidation off-odors (3). A set-up of fermentations of synthetic must containing known content of amino acids and nitrogen sources as well as elements necessary to the yeast metabolism were prepared. Different levels of Zinc or SO2 were tested. Three different commercial Saccharomyces cereviase yeast strains were selected for fermentation. Fusel alcohols and Strecker aldehydes were determined in the finished wines by GC-FID and GC-MS, respectively. Results confirm that all the factors are significant and that must Zn and SO2 levels influence the presence of Strecker aldehydes in the final wine.

1. Hazelwood, L. A.; Daran, J. M.; van Maris, A. J.; Pronk, J. T.; Dickinson, J. R., The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 2008, 74, 2259-66. 2. Singh, R.; Kunkee, R. E., Alcohol Dehydrogenase Activities of Wine Yeasts in Relation to Higher Alcohol Formation. Applied and Environmental Microbiology 1976, 32, 666 – 670. 3. Bueno, M.; Franco-Luesma, E.; Carrascon, V.; Ferreira, V., Evaluation of key and bound aroma carbonyls in wine for a better understanding of their release or formation through oxidation. Flavour Science. Proceedings of the XIV Weurman Flavour Research Symposium 2015, 397-402.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Inês Oliveira*, Mónica Bueno, Purificación Hernández-Orte, Vicente Ferreira

*University of Zaragoza

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.