Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Abstract

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties. This molecule is highly reactive and can form strong associations (alkylhydroxy sulfonates) with aldehydes. Levels of SO2 present in the alcoholic fermentation could then, at least theoretically, prevent the reduction of aldehydes to alcohols. Aldehydes could accumulate under the form of non-volatile adducts which could be released back once SO2 levels drop with aging or oxidation contributing to the development of oxidation off-odors (3). A set-up of fermentations of synthetic must containing known content of amino acids and nitrogen sources as well as elements necessary to the yeast metabolism were prepared. Different levels of Zinc or SO2 were tested. Three different commercial Saccharomyces cereviase yeast strains were selected for fermentation. Fusel alcohols and Strecker aldehydes were determined in the finished wines by GC-FID and GC-MS, respectively. Results confirm that all the factors are significant and that must Zn and SO2 levels influence the presence of Strecker aldehydes in the final wine.

1. Hazelwood, L. A.; Daran, J. M.; van Maris, A. J.; Pronk, J. T.; Dickinson, J. R., The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 2008, 74, 2259-66. 2. Singh, R.; Kunkee, R. E., Alcohol Dehydrogenase Activities of Wine Yeasts in Relation to Higher Alcohol Formation. Applied and Environmental Microbiology 1976, 32, 666 – 670. 3. Bueno, M.; Franco-Luesma, E.; Carrascon, V.; Ferreira, V., Evaluation of key and bound aroma carbonyls in wine for a better understanding of their release or formation through oxidation. Flavour Science. Proceedings of the XIV Weurman Flavour Research Symposium 2015, 397-402.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Inês Oliveira*, Mónica Bueno, Purificación Hernández-Orte, Vicente Ferreira

*University of Zaragoza

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Attractiveness and sweetness of red wines: Synergies between American oak barrels and mannoproteins

In partnership with a Bordeaux property wanting to improve the quality of its second wine, the effects of two factors, American oak barrels and mannoproteins were studied. Their impact on the attractiveness and sweetness of wines were characterized during two successive vintages (2012 and 2013). Vinification took place with a homogeneous batch of Cabernet Sauvignon. The wine was then divided up into various groups of five barrels of French and American oak, new or reused. Analyses of volatile and non-volatile wood compounds were undertaken at four months and eight months of wood ageing, by LC-MS and GC-MS.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.