GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Impact of grapevine leafroll virus infections on vine physiology and the berry transcriptome

Impact of grapevine leafroll virus infections on vine physiology and the berry transcriptome

Abstract

Context and purpose of the study ‐ Grapevine leafroll associated virus (GLRaV) infections deteriorate vine physiological performance and cause high losses of yield and fruit quality and are thus causing serious economic losses in the wine industry. Physiological and molecular studies on the impact of leafroll infections on plant and fruit metabolism are relatively scare and the molecular mechanisms associated with the plant response to the virus during berry ripening are not well understood so far. Commonly observed phenotypic alterations consist in a ripening delay, a reduction in anthocyanin and sugar accumulation. The few molecular studies associated in particular the lack of anthocyanin of berries of infected vines to a repression of key genes of anthocyanin biosynthesis. However such studies did never account for berry heterogeneity and potential phenological shifts induced by virus infection, which could have introduced biases in gene expression studies.

Material and methods ‐ In the present study a long‐term experiment was established in the year 2000, with the aim to investigate the effects of infections with different GLRaVs (GLRaV 1 & GLRaV 1+3) on vine and grape physiology. Physiological data (yield, vigor, photosynthesis, berry quality) has been collected from 2015 to 2018. In 2018 a transcriptomic (RNA‐seq) analysis of 2 reconstituted berry ripening stages was performed. Therefore 245 berries were individually sampled and individually analyzed for sugar and organic acids in order to re‐constitute 2 homogenous ripening stages to circumvent intercluster berry heterogeneity and thus to compensate for phenological shifts induced by virus infections. RNA of reconstituted samples was extracted and sequenced by single end sequencing and subsequently analyzed for differentially expressed genes (DEGs).

Results ‐ Physiological measurement showed a significant decrease in photosynthesis, yield and sugar content, which were highly significant in the co‐infected vines (GLRaV 1+3). RNA‐sequencing of berries revealed a total of 2136 DEGs between control and virus infections. Several transcriptions factors related to abiotic and biotic stress could be identified and showed interesting variation in dependence to ripening stage and infection severity. Strikingly previously reported repression of the anthocyanin biosynthesis and sugar metabolism could not be confirmed by gene expression. This illustrates that the main damaging effect on GLRaV infection is rather related to a phenological shift than to a direct impact on metabolism. The here reported results give new insight in the mechanism of leafroll infection and emphasize the importance of the sampling protocol of molecular studies investigating berry metabolism. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Markus RIENTH (1), Sana GHAFFARI (1,2), Jean‐Sébastien REYNARD (3)

(1) Changins, haute ecole de viticulture et œnologie, route de Duillier 50, 1260 Nyon, Switzerland
(2) Higher Institute of Applied Biology of Medenine, Route el Djorf km 22.5, 4119 Medenine, Tunisia
(3) Agroscope, route de Duillier 50, 1260 Nyon, Switzerland

Contact the author

Keywords

Grapevine leafroll virus, GLRaV 1, GLRaV 3, RNA‐seq, berry metabolism

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of yeast derivatives to increase the phenolic maturity and aroma intensity of wine

Using viticultural and enological techniques to increase aromatics in white wine is a prized yet challenging technique for commercial wine producers. Equally difficult are challenges encountered in hastening phenolic maturity and thereby increasing color intensity in red wines. The ability to alter organoleptic and visual properties of wines plays a decisive role in vintages in which grapes are not able to reach full maturity, which is seen increasingly more often as a result of climate change. A new, yeast-based product on the viticultural market may give the opportunity to increase sensory properties of finished wines. Manufacturer packaging claims these yeast derivatives intensify wine aromas of white grape varieties, as well as improve phenolic ripeness of red varieties, but the effects of this application have been little researched until now. The current study applied the yeast derivative, according to the manufacture’s instructions, to the leaves of both neutral and aromatic white wine varieties, as well as on structured red wine varieties. Chemical parameters and volatile aromatics were analyzed in grape musts and finished wines, and all wines were subjected to sensory analysis by a tasting panel. Collective results of all analyses showed that the application of the yeast derivative in the vineyard showed no effect across all varieties examined, and did not intensify white wine aromatics, nor improve phenolic ripeness and color intensity in red wine.

Viticoltura dl montagna: elemento di tutela e valorizzazione del territorio

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

The impact of vine pruning methods on physiological development and health condition of Vitis vinifera

This project aims on monitoring the plant development and comparison of the effects of various training systems on vine fertility and physiological processes.

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics.