GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Early detection project – make a GTD infection visible without disease symptoms

Early detection project – make a GTD infection visible without disease symptoms

Abstract

Context and purpose of the study ‐ The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world. GTDs cause foliar discoloration, stunted growth, decline, sectorial and/or central necrosis of the trunk wood, and dieback, while the quality and the quantity of the grapes and therefore the wine production is reduced. The disease management is challenging for vine‐growers since the responsible fungi colonize wood tissues (and are therefore inaccessible for conventional fungicides) and the related symptoms occur mostly after a long period of latency. The aims of this project were first to distinguish between healthy and infected plants before the symptoms appear and second to document the efficacy of BASF ´s Tessior®‐ System for wound protection under field conditions.

Material and methods ‐ Long term field trials were established between 2014 and 2015 in Germany, France, Greece, and Italy, where each year the pruning wounds are treated with Tessior®. In order to increase the infection pressure, some of the vineyards are artificially inoculated with spores of Phaeomoniellachlamydospora and Botryosphaeriaceae species. The presence of P. chlamydospora – a pathogen causing esca‐disease – and Botryosphaeriaceae species – causing Botryosphaeria dieback – in grapevines was determined with an optimized protocol. Samples were collected by drilling a 5 mm diameter hole in the spurs below a pruning wound which was closed then with a wound sealant. The wood chips were lyophilized and afterwards homogenized using TissueLyser II (Qiagen). Total genomic DNA was extracted from the grapevine samples and quantitative Real‐Time PCR using TaqMan probes was performed.

Results ‐ This protocol has been proved to be fast and accurate to quantify the DNA amount of GTDs related pathogens in grapevine wood. Furthermore, the efficacy of Tessior® wound protectant has been verified showing significant reduction of infection with P. chlamydospora and Botryosphaeriaceae species.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Szabina LENGYEL (1), Randall E. GOLD (2), Jochen FISCHER (1), Alexander YEMELIN (1), Eckhard THINES (1), Annett KÜHN (2)

(1) Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Erwin-Schrödinger-Straße 56, D-67663 Kaiserslautern, Germany
(2) BASF SE, Agricultural Center, Speyerer Straße 2, D-67117 Limburgerhof, Germany

Contact the author

Keywords

Grapevine, Phaeomoniellachlamydospora, Botryosphaeriaceae, quantitative Real‐Time PCR, TaqMan, Tessior®

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Efectos del deshojado y de su combinación con el aclareo de Racimos en los componentes básicos de la producción y del Mosto, sobre cv. Tempranillo en la D.O. Ribera del Duero

Las técnicas de manejo del canopy de la vid pueden favorecer la adaptación de los sistemas de conducción a diversas condiciones de cultivo para obtener uva de calidad.

Extraction-modelling approach demonstrates grapevine rooting patterns varies significantly as a result of contrasting ground management and growing environment in cover cropped vineyards

The use of cover crops in viticulture has increased in recent decades as growers seek to reduce herbicide use, improve soil organic matter and biodiversity, and minimize soil-related agronomic issues such as compaction and erosion.

Field evaluation of biofungicides to control powdery mildew and botrytis bunch rot of wine grapes in California

Grapevine powdery mildew caused by Erysiphe necator and Botrytis bunch rot caused by Botrytis cinerea are two of the most important fungal diseases in California grape production.

Copper, iron and zinc in surface layer of Primošten vineyard soils

Long-term use of copper fungicides causes increased accumulation of total copper in the surface layer of vineyard soils. Many of authors has researched the anthropogenic influx of copper in such soils, which can result in environmental risks.

Colour, phenolic, and sensory characteristics of commercial monovarietal white wines produced with maceration

White wines produced with skin and seed contact are of great interest in the wine sector. Maceration, whether performed prior to or concurrently with alcoholic fermentation, or even extended beyond its completion, significantly impacts the chromatic, mouthfeel, and aroma characteristics of these wines.