GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Early detection project – make a GTD infection visible without disease symptoms

Early detection project – make a GTD infection visible without disease symptoms

Abstract

Context and purpose of the study ‐ The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world. GTDs cause foliar discoloration, stunted growth, decline, sectorial and/or central necrosis of the trunk wood, and dieback, while the quality and the quantity of the grapes and therefore the wine production is reduced. The disease management is challenging for vine‐growers since the responsible fungi colonize wood tissues (and are therefore inaccessible for conventional fungicides) and the related symptoms occur mostly after a long period of latency. The aims of this project were first to distinguish between healthy and infected plants before the symptoms appear and second to document the efficacy of BASF ´s Tessior®‐ System for wound protection under field conditions.

Material and methods ‐ Long term field trials were established between 2014 and 2015 in Germany, France, Greece, and Italy, where each year the pruning wounds are treated with Tessior®. In order to increase the infection pressure, some of the vineyards are artificially inoculated with spores of Phaeomoniellachlamydospora and Botryosphaeriaceae species. The presence of P. chlamydospora – a pathogen causing esca‐disease – and Botryosphaeriaceae species – causing Botryosphaeria dieback – in grapevines was determined with an optimized protocol. Samples were collected by drilling a 5 mm diameter hole in the spurs below a pruning wound which was closed then with a wound sealant. The wood chips were lyophilized and afterwards homogenized using TissueLyser II (Qiagen). Total genomic DNA was extracted from the grapevine samples and quantitative Real‐Time PCR using TaqMan probes was performed.

Results ‐ This protocol has been proved to be fast and accurate to quantify the DNA amount of GTDs related pathogens in grapevine wood. Furthermore, the efficacy of Tessior® wound protectant has been verified showing significant reduction of infection with P. chlamydospora and Botryosphaeriaceae species.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Szabina LENGYEL (1), Randall E. GOLD (2), Jochen FISCHER (1), Alexander YEMELIN (1), Eckhard THINES (1), Annett KÜHN (2)

(1) Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Erwin-Schrödinger-Straße 56, D-67663 Kaiserslautern, Germany
(2) BASF SE, Agricultural Center, Speyerer Straße 2, D-67117 Limburgerhof, Germany

Contact the author

Keywords

Grapevine, Phaeomoniellachlamydospora, Botryosphaeriaceae, quantitative Real‐Time PCR, TaqMan, Tessior®

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).

TCA – A status report on South African cork closures

Cork taint decreases the commercial value of wine as tainted wines are rejected by consumers. Although other compounds in wine and cork can also be responsible for causing a taint, 2,4,6-trichloroanisole (TCA) is regarded as the primary cause of cork taint. As cork taint is often used in marketing campaigns against natural cork closures,

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.