GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Early detection project – make a GTD infection visible without disease symptoms

Early detection project – make a GTD infection visible without disease symptoms

Abstract

Context and purpose of the study ‐ The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world. GTDs cause foliar discoloration, stunted growth, decline, sectorial and/or central necrosis of the trunk wood, and dieback, while the quality and the quantity of the grapes and therefore the wine production is reduced. The disease management is challenging for vine‐growers since the responsible fungi colonize wood tissues (and are therefore inaccessible for conventional fungicides) and the related symptoms occur mostly after a long period of latency. The aims of this project were first to distinguish between healthy and infected plants before the symptoms appear and second to document the efficacy of BASF ´s Tessior®‐ System for wound protection under field conditions.

Material and methods ‐ Long term field trials were established between 2014 and 2015 in Germany, France, Greece, and Italy, where each year the pruning wounds are treated with Tessior®. In order to increase the infection pressure, some of the vineyards are artificially inoculated with spores of Phaeomoniellachlamydospora and Botryosphaeriaceae species. The presence of P. chlamydospora – a pathogen causing esca‐disease – and Botryosphaeriaceae species – causing Botryosphaeria dieback – in grapevines was determined with an optimized protocol. Samples were collected by drilling a 5 mm diameter hole in the spurs below a pruning wound which was closed then with a wound sealant. The wood chips were lyophilized and afterwards homogenized using TissueLyser II (Qiagen). Total genomic DNA was extracted from the grapevine samples and quantitative Real‐Time PCR using TaqMan probes was performed.

Results ‐ This protocol has been proved to be fast and accurate to quantify the DNA amount of GTDs related pathogens in grapevine wood. Furthermore, the efficacy of Tessior® wound protectant has been verified showing significant reduction of infection with P. chlamydospora and Botryosphaeriaceae species.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Szabina LENGYEL (1), Randall E. GOLD (2), Jochen FISCHER (1), Alexander YEMELIN (1), Eckhard THINES (1), Annett KÜHN (2)

(1) Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Erwin-Schrödinger-Straße 56, D-67663 Kaiserslautern, Germany
(2) BASF SE, Agricultural Center, Speyerer Straße 2, D-67117 Limburgerhof, Germany

Contact the author

Keywords

Grapevine, Phaeomoniellachlamydospora, Botryosphaeriaceae, quantitative Real‐Time PCR, TaqMan, Tessior®

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Innovative approaches in the evaluation of the spatial and temporal biodiversity of grape varieties from the Portuguese Bairrada appellation using LIMM-PCA: a study across five harvests

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard and wine ecosystems is required, as well as the varieties plasticity. Particular attention should be devoted to the spatial and temporal interactions between authorized or recommended varieties for a specific demarcated region and clime and vineyard conditions (such as soil type, orientation of the lines, age of the vine, density of planting, harvesting practices, among others).

Upscaling the integrated terroir zoning through digital soil mapping: a case study in the Designation of Origin Campo de Borja

homogeneous zones by intersecting several partial zonings of major factors that influence vineyard growth. Each of them follows specific process from their corresponding disciplines. Soil zoning specifically refers to a Soil Resource Inventory map that has traditionally been generated by conventional soil mapping methods. These methods have shortcomings in reaching fine cartographic and categorical details and involve significant expenses, which undermines their applicability. A new framework named Digital Soil Mapping has introduced quantitative models by statistical techniques to establish soil-landscape relationships and is able to provide intensive scale cartography.

In the present study, a microzoning at 1:10.000 scale is generated from an initial zoning, where the conventional soil map with polytaxic map units is replaced by a new one from digital techniques that disaggregates them. The comparison between the zonings considers a quantitative evaluation of capability for each Homogeneous Terroir Unit by means of the Viticultural Quality Index and its categorization based on its distribution by map. The spatial intersection of both maps gives rise to a confusion matrix in which the flows of class variations after the substitution are assessed.

The results show a five-fold increase in the number of Homogeneous Terroir Units identified and a larger differentiation among them, evidenced by a wider range in the capability index distribution. Both elements are accompanied by an increase in the detection of areas of higher potential within previously undervalued uniform zones.These features are a direct effect of the improvements brought by Digital Soil Mapping techniques and would verify the advantages of their implementation in the Integrated Terroir zoning. Eventually, such new highly detailed terroir units would benefit precision viticulture and sustainable management practices.

Recovery of olfactory capacity following a COVID-19 infection

In this video recording of the IVES science meeting 2021, Sophie Tempère (Institut des Sciences de la Vigne et du Vin – ISVV, Université de Bordeaux) speaks about the recovery of olfactory capacity following a COVID-19 infection. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Sulfur dioxide is the most commonly used additive in oenology to protect wine from oxidation and microorganisms. Once added to wine SO2 is able to react with carbonyl compounds to form carbonyl bisulfites what affects their reactivity.