Macrowine 2021
IVES 9 IVES Conference Series 9 Using elicitors in different grape varieties. Effect over their phenolic composition

Using elicitors in different grape varieties. Effect over their phenolic composition

Abstract

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known. They are responsible for the color of wines, especially anthocyanins (colored pigments responsible for the chromatic characteristics of red wines), tannins (responsible for the long-term stability of red wine color), and flavonols (compounds that may influence wine color through copigmentation). Moreover, they influence on other organoleptic properties such as astringency, bitterness, and body (Ruiz-García et al. 2012). Several techniques have been applied to improve the phenolic content of grapes. Leaving aside genetically modified plants, which are not allowed by the regulations of most countries, the most common techniques are related to cultural practices: pruning (González-Neves et al. 2002, Pérez-Lamela et al. 2007), cluster thinning (Fanzone et al. 2012, Soufleros et al. 2011), leaf removal (Gatti et al. 2012), and deficit irrigation (De la Hera et al. 2005, Koundouras et al. 2009). Another, more recent, technique for the same purpose is the use of elicitors, which are growing in interests. Elicitors are phytochemicals that do not kill pathogens themselves but trigger plant mechanisms that improve pathogen resistance, among them an increase in the levels of phenolic compounds (Vitallini et al. 2011), which are not only toxic to pathogens but also the precursors of disease-resistant material such as lignin (Pan and Liu 2011). This observed increase in phenolic compounds after the application of some elicitors justifies the interest in their application in fruits and vegetables. In our study, the effect of the application of benzhothiadiazol (BTH) and methyl jasmonate at veraison on the phenolic composition of grapes from three varieties (Monastrell, Cabernet Sauvignon and Merlot) was studied at harvest and after that, in wines at the end of alcoholic fermentation.The results showed that the effects of the treatments differed in the three varieties for the several phenolic compounds.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rocio Gil

*IMIDA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.