Macrowine 2021
IVES 9 IVES Conference Series 9 Using elicitors in different grape varieties. Effect over their phenolic composition

Using elicitors in different grape varieties. Effect over their phenolic composition

Abstract

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known. They are responsible for the color of wines, especially anthocyanins (colored pigments responsible for the chromatic characteristics of red wines), tannins (responsible for the long-term stability of red wine color), and flavonols (compounds that may influence wine color through copigmentation). Moreover, they influence on other organoleptic properties such as astringency, bitterness, and body (Ruiz-García et al. 2012). Several techniques have been applied to improve the phenolic content of grapes. Leaving aside genetically modified plants, which are not allowed by the regulations of most countries, the most common techniques are related to cultural practices: pruning (González-Neves et al. 2002, Pérez-Lamela et al. 2007), cluster thinning (Fanzone et al. 2012, Soufleros et al. 2011), leaf removal (Gatti et al. 2012), and deficit irrigation (De la Hera et al. 2005, Koundouras et al. 2009). Another, more recent, technique for the same purpose is the use of elicitors, which are growing in interests. Elicitors are phytochemicals that do not kill pathogens themselves but trigger plant mechanisms that improve pathogen resistance, among them an increase in the levels of phenolic compounds (Vitallini et al. 2011), which are not only toxic to pathogens but also the precursors of disease-resistant material such as lignin (Pan and Liu 2011). This observed increase in phenolic compounds after the application of some elicitors justifies the interest in their application in fruits and vegetables. In our study, the effect of the application of benzhothiadiazol (BTH) and methyl jasmonate at veraison on the phenolic composition of grapes from three varieties (Monastrell, Cabernet Sauvignon and Merlot) was studied at harvest and after that, in wines at the end of alcoholic fermentation.The results showed that the effects of the treatments differed in the three varieties for the several phenolic compounds.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rocio Gil

*IMIDA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins