Macrowine 2021
IVES 9 IVES Conference Series 9 Using elicitors in different grape varieties. Effect over their phenolic composition

Using elicitors in different grape varieties. Effect over their phenolic composition

Abstract

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known. They are responsible for the color of wines, especially anthocyanins (colored pigments responsible for the chromatic characteristics of red wines), tannins (responsible for the long-term stability of red wine color), and flavonols (compounds that may influence wine color through copigmentation). Moreover, they influence on other organoleptic properties such as astringency, bitterness, and body (Ruiz-García et al. 2012). Several techniques have been applied to improve the phenolic content of grapes. Leaving aside genetically modified plants, which are not allowed by the regulations of most countries, the most common techniques are related to cultural practices: pruning (González-Neves et al. 2002, Pérez-Lamela et al. 2007), cluster thinning (Fanzone et al. 2012, Soufleros et al. 2011), leaf removal (Gatti et al. 2012), and deficit irrigation (De la Hera et al. 2005, Koundouras et al. 2009). Another, more recent, technique for the same purpose is the use of elicitors, which are growing in interests. Elicitors are phytochemicals that do not kill pathogens themselves but trigger plant mechanisms that improve pathogen resistance, among them an increase in the levels of phenolic compounds (Vitallini et al. 2011), which are not only toxic to pathogens but also the precursors of disease-resistant material such as lignin (Pan and Liu 2011). This observed increase in phenolic compounds after the application of some elicitors justifies the interest in their application in fruits and vegetables. In our study, the effect of the application of benzhothiadiazol (BTH) and methyl jasmonate at veraison on the phenolic composition of grapes from three varieties (Monastrell, Cabernet Sauvignon and Merlot) was studied at harvest and after that, in wines at the end of alcoholic fermentation.The results showed that the effects of the treatments differed in the three varieties for the several phenolic compounds.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rocio Gil

*IMIDA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.