Macrowine 2021
IVES 9 IVES Conference Series 9 Using elicitors in different grape varieties. Effect over their phenolic composition

Using elicitors in different grape varieties. Effect over their phenolic composition

Abstract

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known. They are responsible for the color of wines, especially anthocyanins (colored pigments responsible for the chromatic characteristics of red wines), tannins (responsible for the long-term stability of red wine color), and flavonols (compounds that may influence wine color through copigmentation). Moreover, they influence on other organoleptic properties such as astringency, bitterness, and body (Ruiz-García et al. 2012). Several techniques have been applied to improve the phenolic content of grapes. Leaving aside genetically modified plants, which are not allowed by the regulations of most countries, the most common techniques are related to cultural practices: pruning (González-Neves et al. 2002, Pérez-Lamela et al. 2007), cluster thinning (Fanzone et al. 2012, Soufleros et al. 2011), leaf removal (Gatti et al. 2012), and deficit irrigation (De la Hera et al. 2005, Koundouras et al. 2009). Another, more recent, technique for the same purpose is the use of elicitors, which are growing in interests. Elicitors are phytochemicals that do not kill pathogens themselves but trigger plant mechanisms that improve pathogen resistance, among them an increase in the levels of phenolic compounds (Vitallini et al. 2011), which are not only toxic to pathogens but also the precursors of disease-resistant material such as lignin (Pan and Liu 2011). This observed increase in phenolic compounds after the application of some elicitors justifies the interest in their application in fruits and vegetables. In our study, the effect of the application of benzhothiadiazol (BTH) and methyl jasmonate at veraison on the phenolic composition of grapes from three varieties (Monastrell, Cabernet Sauvignon and Merlot) was studied at harvest and after that, in wines at the end of alcoholic fermentation.The results showed that the effects of the treatments differed in the three varieties for the several phenolic compounds.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rocio Gil

*IMIDA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.