Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

Abstract

Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines. MATERIAL AND METHODS: Macabeo grapes were harvested at the appropriate maturity and pressed. The grape juice was immediately sulfited and pectinolytic enzymes were added to facilitate settling. After 24 h, clean grape juices (around 70 L each) were racked into nine 100-L stainless steel tanks and were fermented under controlled temperature (16-18 ºC) with selected yeasts. Three tanks were considered as controls whereas other 6 were supplemented with 40 g/hL of 2 inactive yeasts (3 with Optiwhite and 3 with Optimumwhite; Lallemand Inc., Montreal, Canada). Once the alcoholic fermentation was finished, wines were sulfited, racked and cold stabilized. Proteins were analyzed by HRSEC-DAD [3], polysaccharides by HRSEC-RID [4] and foaming properties by the Mosalux procedure [5]. RESULTS: Both inactive yeasts increased the protein and polysaccharide concentration of the base wines in comparison with the non-supplemented control wines. Optiwhite was more effective for enriching polysaccharide concentration whereas Optimumwhite was more effective for enriching protein concentration. Regardless the foam properties, supplementation with Optiwhite originated base wines with a significant higher value of foamability (Hm) than the control. The persistence of the foam (Hs) also tended to be higher but this increase was not statistically significant. Optimumwhite also tended to increase both parameters (Hm and Hs) but none of these differences was statistically significant. CONCLUSIONS: The supplementation with inactive yeasts is a useful tool to increase protein and polysaccharide concentration of base wines and also to improve its foam properties.

REFERENCES: [1] Esteruelas M, González-Royo E, Kontoudakis N, Orte A, Cantos A, Canals JM, Zamora F (2015) J. Sci. Food Agric., 95, 2071-2080 [2] Pozo-Bayón MA, Andujar-Ortiz I, Alcalde-Hidalgo JM, Martín-Alvárez PJ, Moreno-Arribas MV (2009) J. Agric. Food Chem. 57, 10784-10792 [3] Canals JM, Arola L, Zamora F (1998) Am. J. Enol. Vitic., 49, 383-388 [4] Ayestaran B, Guadalupe Z, Leon D (2004) Anal. Chim. Acta. 513:29-39 [5] Maujean A, Poinsaut P, Dantan H, Brissonet F, Cossiez E (1990) Bull. OIV, 711-712, 405-426

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Fernando Zamora*, Elena González-Royo, Joan Miquel Canals, José María Heras, Laura Medina, Nathalie Sieczkowski

*Universitat Rovira i Virgili

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).