Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

Abstract

Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines. MATERIAL AND METHODS: Macabeo grapes were harvested at the appropriate maturity and pressed. The grape juice was immediately sulfited and pectinolytic enzymes were added to facilitate settling. After 24 h, clean grape juices (around 70 L each) were racked into nine 100-L stainless steel tanks and were fermented under controlled temperature (16-18 ºC) with selected yeasts. Three tanks were considered as controls whereas other 6 were supplemented with 40 g/hL of 2 inactive yeasts (3 with Optiwhite and 3 with Optimumwhite; Lallemand Inc., Montreal, Canada). Once the alcoholic fermentation was finished, wines were sulfited, racked and cold stabilized. Proteins were analyzed by HRSEC-DAD [3], polysaccharides by HRSEC-RID [4] and foaming properties by the Mosalux procedure [5]. RESULTS: Both inactive yeasts increased the protein and polysaccharide concentration of the base wines in comparison with the non-supplemented control wines. Optiwhite was more effective for enriching polysaccharide concentration whereas Optimumwhite was more effective for enriching protein concentration. Regardless the foam properties, supplementation with Optiwhite originated base wines with a significant higher value of foamability (Hm) than the control. The persistence of the foam (Hs) also tended to be higher but this increase was not statistically significant. Optimumwhite also tended to increase both parameters (Hm and Hs) but none of these differences was statistically significant. CONCLUSIONS: The supplementation with inactive yeasts is a useful tool to increase protein and polysaccharide concentration of base wines and also to improve its foam properties.

REFERENCES: [1] Esteruelas M, González-Royo E, Kontoudakis N, Orte A, Cantos A, Canals JM, Zamora F (2015) J. Sci. Food Agric., 95, 2071-2080 [2] Pozo-Bayón MA, Andujar-Ortiz I, Alcalde-Hidalgo JM, Martín-Alvárez PJ, Moreno-Arribas MV (2009) J. Agric. Food Chem. 57, 10784-10792 [3] Canals JM, Arola L, Zamora F (1998) Am. J. Enol. Vitic., 49, 383-388 [4] Ayestaran B, Guadalupe Z, Leon D (2004) Anal. Chim. Acta. 513:29-39 [5] Maujean A, Poinsaut P, Dantan H, Brissonet F, Cossiez E (1990) Bull. OIV, 711-712, 405-426

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Fernando Zamora*, Elena González-Royo, Joan Miquel Canals, José María Heras, Laura Medina, Nathalie Sieczkowski

*Universitat Rovira i Virgili

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].