Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

Abstract

Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines. MATERIAL AND METHODS: Macabeo grapes were harvested at the appropriate maturity and pressed. The grape juice was immediately sulfited and pectinolytic enzymes were added to facilitate settling. After 24 h, clean grape juices (around 70 L each) were racked into nine 100-L stainless steel tanks and were fermented under controlled temperature (16-18 ºC) with selected yeasts. Three tanks were considered as controls whereas other 6 were supplemented with 40 g/hL of 2 inactive yeasts (3 with Optiwhite and 3 with Optimumwhite; Lallemand Inc., Montreal, Canada). Once the alcoholic fermentation was finished, wines were sulfited, racked and cold stabilized. Proteins were analyzed by HRSEC-DAD [3], polysaccharides by HRSEC-RID [4] and foaming properties by the Mosalux procedure [5]. RESULTS: Both inactive yeasts increased the protein and polysaccharide concentration of the base wines in comparison with the non-supplemented control wines. Optiwhite was more effective for enriching polysaccharide concentration whereas Optimumwhite was more effective for enriching protein concentration. Regardless the foam properties, supplementation with Optiwhite originated base wines with a significant higher value of foamability (Hm) than the control. The persistence of the foam (Hs) also tended to be higher but this increase was not statistically significant. Optimumwhite also tended to increase both parameters (Hm and Hs) but none of these differences was statistically significant. CONCLUSIONS: The supplementation with inactive yeasts is a useful tool to increase protein and polysaccharide concentration of base wines and also to improve its foam properties.

REFERENCES: [1] Esteruelas M, González-Royo E, Kontoudakis N, Orte A, Cantos A, Canals JM, Zamora F (2015) J. Sci. Food Agric., 95, 2071-2080 [2] Pozo-Bayón MA, Andujar-Ortiz I, Alcalde-Hidalgo JM, Martín-Alvárez PJ, Moreno-Arribas MV (2009) J. Agric. Food Chem. 57, 10784-10792 [3] Canals JM, Arola L, Zamora F (1998) Am. J. Enol. Vitic., 49, 383-388 [4] Ayestaran B, Guadalupe Z, Leon D (2004) Anal. Chim. Acta. 513:29-39 [5] Maujean A, Poinsaut P, Dantan H, Brissonet F, Cossiez E (1990) Bull. OIV, 711-712, 405-426

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Fernando Zamora*, Elena González-Royo, Joan Miquel Canals, José María Heras, Laura Medina, Nathalie Sieczkowski

*Universitat Rovira i Virgili

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.