Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

Abstract

Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines. MATERIAL AND METHODS: Macabeo grapes were harvested at the appropriate maturity and pressed. The grape juice was immediately sulfited and pectinolytic enzymes were added to facilitate settling. After 24 h, clean grape juices (around 70 L each) were racked into nine 100-L stainless steel tanks and were fermented under controlled temperature (16-18 ºC) with selected yeasts. Three tanks were considered as controls whereas other 6 were supplemented with 40 g/hL of 2 inactive yeasts (3 with Optiwhite and 3 with Optimumwhite; Lallemand Inc., Montreal, Canada). Once the alcoholic fermentation was finished, wines were sulfited, racked and cold stabilized. Proteins were analyzed by HRSEC-DAD [3], polysaccharides by HRSEC-RID [4] and foaming properties by the Mosalux procedure [5]. RESULTS: Both inactive yeasts increased the protein and polysaccharide concentration of the base wines in comparison with the non-supplemented control wines. Optiwhite was more effective for enriching polysaccharide concentration whereas Optimumwhite was more effective for enriching protein concentration. Regardless the foam properties, supplementation with Optiwhite originated base wines with a significant higher value of foamability (Hm) than the control. The persistence of the foam (Hs) also tended to be higher but this increase was not statistically significant. Optimumwhite also tended to increase both parameters (Hm and Hs) but none of these differences was statistically significant. CONCLUSIONS: The supplementation with inactive yeasts is a useful tool to increase protein and polysaccharide concentration of base wines and also to improve its foam properties.

REFERENCES: [1] Esteruelas M, González-Royo E, Kontoudakis N, Orte A, Cantos A, Canals JM, Zamora F (2015) J. Sci. Food Agric., 95, 2071-2080 [2] Pozo-Bayón MA, Andujar-Ortiz I, Alcalde-Hidalgo JM, Martín-Alvárez PJ, Moreno-Arribas MV (2009) J. Agric. Food Chem. 57, 10784-10792 [3] Canals JM, Arola L, Zamora F (1998) Am. J. Enol. Vitic., 49, 383-388 [4] Ayestaran B, Guadalupe Z, Leon D (2004) Anal. Chim. Acta. 513:29-39 [5] Maujean A, Poinsaut P, Dantan H, Brissonet F, Cossiez E (1990) Bull. OIV, 711-712, 405-426

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Fernando Zamora*, Elena González-Royo, Joan Miquel Canals, José María Heras, Laura Medina, Nathalie Sieczkowski

*Universitat Rovira i Virgili

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.