Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

Abstract

Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines. MATERIAL AND METHODS: Macabeo grapes were harvested at the appropriate maturity and pressed. The grape juice was immediately sulfited and pectinolytic enzymes were added to facilitate settling. After 24 h, clean grape juices (around 70 L each) were racked into nine 100-L stainless steel tanks and were fermented under controlled temperature (16-18 ºC) with selected yeasts. Three tanks were considered as controls whereas other 6 were supplemented with 40 g/hL of 2 inactive yeasts (3 with Optiwhite and 3 with Optimumwhite; Lallemand Inc., Montreal, Canada). Once the alcoholic fermentation was finished, wines were sulfited, racked and cold stabilized. Proteins were analyzed by HRSEC-DAD [3], polysaccharides by HRSEC-RID [4] and foaming properties by the Mosalux procedure [5]. RESULTS: Both inactive yeasts increased the protein and polysaccharide concentration of the base wines in comparison with the non-supplemented control wines. Optiwhite was more effective for enriching polysaccharide concentration whereas Optimumwhite was more effective for enriching protein concentration. Regardless the foam properties, supplementation with Optiwhite originated base wines with a significant higher value of foamability (Hm) than the control. The persistence of the foam (Hs) also tended to be higher but this increase was not statistically significant. Optimumwhite also tended to increase both parameters (Hm and Hs) but none of these differences was statistically significant. CONCLUSIONS: The supplementation with inactive yeasts is a useful tool to increase protein and polysaccharide concentration of base wines and also to improve its foam properties.

REFERENCES: [1] Esteruelas M, González-Royo E, Kontoudakis N, Orte A, Cantos A, Canals JM, Zamora F (2015) J. Sci. Food Agric., 95, 2071-2080 [2] Pozo-Bayón MA, Andujar-Ortiz I, Alcalde-Hidalgo JM, Martín-Alvárez PJ, Moreno-Arribas MV (2009) J. Agric. Food Chem. 57, 10784-10792 [3] Canals JM, Arola L, Zamora F (1998) Am. J. Enol. Vitic., 49, 383-388 [4] Ayestaran B, Guadalupe Z, Leon D (2004) Anal. Chim. Acta. 513:29-39 [5] Maujean A, Poinsaut P, Dantan H, Brissonet F, Cossiez E (1990) Bull. OIV, 711-712, 405-426

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Fernando Zamora*, Elena González-Royo, Joan Miquel Canals, José María Heras, Laura Medina, Nathalie Sieczkowski

*Universitat Rovira i Virgili

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).