Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of smoke exposure on the chemical composition of grapes

Impact of smoke exposure on the chemical composition of grapes

Abstract

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2]. These volatile phenols have been shown to accumulate in grapes in glycoconjugate forms, following grapevine exposure to smoke [3, 4]. However, their mode of entry, and therefore the factors influencing their uptake from smoke by grapevine leaves and fruit, have not as yet, been adequately investigated. This study aimed to investigate the extent to which berry physiology, in particular, the development of the berry cuticle and epicuticular wax, influences the uptake of volatile compounds from smoke. Potted Chardonnay and Shiraz grapevines were exposed to smoke for 60 minutes, at approximately one week prior to maturity. Fruit samples were collected immediately after smoke treatment, and again at maturity (i.e. one week later), for imaging (using an environmental scanning electron microscope) to identify any differences in the physiology of control and smoke-affected berries. Fruit sampled at maturity was also analysed by gas chromatography-mass spectrometry and ultrahigh performance liquid chromatography-tandem mass spectrometry to determine concentrations of volatile phenols and their glycoconjugates, respectively. The potential for a commercial particle film, i.e. kaolin, to act as a protective barrier against smoke, was also investigated, by comparing the volatile phenol and glycoconjugate concentrations of fruit harvested from grapevines treated with kaolin and/or smoke.

Literature: 1. Kennison, K.R., et al., Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. Journal of Agricultural and Food Chemistry, 2008, 56(16): 7379-7383. 2. Parker, M., et al., Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. Journal of Agricultural and Food Chemistry, 2012, 60(10): 2629-2637. 3. Hayasaka, Y., et al., Identification of a beta-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Analytica Chimica Acta, 2010, 660(1-2): 143-148. 4. Ristic, R., et al., The effect of winemaking techniques on the intensity of smoke taint in wine. Australian Journal of Grape and Wine Research, 2011, 17(2): S29-S40.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Lieke Van der Hulst*, Christopher Ford, Kerry Wilkinson, Natoiya Lloyd, Rachel Burton

*University of Adelaide

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.