Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of smoke exposure on the chemical composition of grapes

Impact of smoke exposure on the chemical composition of grapes

Abstract

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2]. These volatile phenols have been shown to accumulate in grapes in glycoconjugate forms, following grapevine exposure to smoke [3, 4]. However, their mode of entry, and therefore the factors influencing their uptake from smoke by grapevine leaves and fruit, have not as yet, been adequately investigated. This study aimed to investigate the extent to which berry physiology, in particular, the development of the berry cuticle and epicuticular wax, influences the uptake of volatile compounds from smoke. Potted Chardonnay and Shiraz grapevines were exposed to smoke for 60 minutes, at approximately one week prior to maturity. Fruit samples were collected immediately after smoke treatment, and again at maturity (i.e. one week later), for imaging (using an environmental scanning electron microscope) to identify any differences in the physiology of control and smoke-affected berries. Fruit sampled at maturity was also analysed by gas chromatography-mass spectrometry and ultrahigh performance liquid chromatography-tandem mass spectrometry to determine concentrations of volatile phenols and their glycoconjugates, respectively. The potential for a commercial particle film, i.e. kaolin, to act as a protective barrier against smoke, was also investigated, by comparing the volatile phenol and glycoconjugate concentrations of fruit harvested from grapevines treated with kaolin and/or smoke.

Literature: 1. Kennison, K.R., et al., Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. Journal of Agricultural and Food Chemistry, 2008, 56(16): 7379-7383. 2. Parker, M., et al., Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. Journal of Agricultural and Food Chemistry, 2012, 60(10): 2629-2637. 3. Hayasaka, Y., et al., Identification of a beta-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Analytica Chimica Acta, 2010, 660(1-2): 143-148. 4. Ristic, R., et al., The effect of winemaking techniques on the intensity of smoke taint in wine. Australian Journal of Grape and Wine Research, 2011, 17(2): S29-S40.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Lieke Van der Hulst*, Christopher Ford, Kerry Wilkinson, Natoiya Lloyd, Rachel Burton

*University of Adelaide

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.