Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of smoke exposure on the chemical composition of grapes

Impact of smoke exposure on the chemical composition of grapes

Abstract

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2]. These volatile phenols have been shown to accumulate in grapes in glycoconjugate forms, following grapevine exposure to smoke [3, 4]. However, their mode of entry, and therefore the factors influencing their uptake from smoke by grapevine leaves and fruit, have not as yet, been adequately investigated. This study aimed to investigate the extent to which berry physiology, in particular, the development of the berry cuticle and epicuticular wax, influences the uptake of volatile compounds from smoke. Potted Chardonnay and Shiraz grapevines were exposed to smoke for 60 minutes, at approximately one week prior to maturity. Fruit samples were collected immediately after smoke treatment, and again at maturity (i.e. one week later), for imaging (using an environmental scanning electron microscope) to identify any differences in the physiology of control and smoke-affected berries. Fruit sampled at maturity was also analysed by gas chromatography-mass spectrometry and ultrahigh performance liquid chromatography-tandem mass spectrometry to determine concentrations of volatile phenols and their glycoconjugates, respectively. The potential for a commercial particle film, i.e. kaolin, to act as a protective barrier against smoke, was also investigated, by comparing the volatile phenol and glycoconjugate concentrations of fruit harvested from grapevines treated with kaolin and/or smoke.

Literature: 1. Kennison, K.R., et al., Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. Journal of Agricultural and Food Chemistry, 2008, 56(16): 7379-7383. 2. Parker, M., et al., Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. Journal of Agricultural and Food Chemistry, 2012, 60(10): 2629-2637. 3. Hayasaka, Y., et al., Identification of a beta-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Analytica Chimica Acta, 2010, 660(1-2): 143-148. 4. Ristic, R., et al., The effect of winemaking techniques on the intensity of smoke taint in wine. Australian Journal of Grape and Wine Research, 2011, 17(2): S29-S40.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Lieke Van der Hulst*, Christopher Ford, Kerry Wilkinson, Natoiya Lloyd, Rachel Burton

*University of Adelaide

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.