Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of smoke exposure on the chemical composition of grapes

Impact of smoke exposure on the chemical composition of grapes

Abstract

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2]. These volatile phenols have been shown to accumulate in grapes in glycoconjugate forms, following grapevine exposure to smoke [3, 4]. However, their mode of entry, and therefore the factors influencing their uptake from smoke by grapevine leaves and fruit, have not as yet, been adequately investigated. This study aimed to investigate the extent to which berry physiology, in particular, the development of the berry cuticle and epicuticular wax, influences the uptake of volatile compounds from smoke. Potted Chardonnay and Shiraz grapevines were exposed to smoke for 60 minutes, at approximately one week prior to maturity. Fruit samples were collected immediately after smoke treatment, and again at maturity (i.e. one week later), for imaging (using an environmental scanning electron microscope) to identify any differences in the physiology of control and smoke-affected berries. Fruit sampled at maturity was also analysed by gas chromatography-mass spectrometry and ultrahigh performance liquid chromatography-tandem mass spectrometry to determine concentrations of volatile phenols and their glycoconjugates, respectively. The potential for a commercial particle film, i.e. kaolin, to act as a protective barrier against smoke, was also investigated, by comparing the volatile phenol and glycoconjugate concentrations of fruit harvested from grapevines treated with kaolin and/or smoke.

Literature: 1. Kennison, K.R., et al., Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. Journal of Agricultural and Food Chemistry, 2008, 56(16): 7379-7383. 2. Parker, M., et al., Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. Journal of Agricultural and Food Chemistry, 2012, 60(10): 2629-2637. 3. Hayasaka, Y., et al., Identification of a beta-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Analytica Chimica Acta, 2010, 660(1-2): 143-148. 4. Ristic, R., et al., The effect of winemaking techniques on the intensity of smoke taint in wine. Australian Journal of Grape and Wine Research, 2011, 17(2): S29-S40.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Lieke Van der Hulst*, Christopher Ford, Kerry Wilkinson, Natoiya Lloyd, Rachel Burton

*University of Adelaide

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.