Macrowine 2021
IVES 9 IVES Conference Series 9 Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese


2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide. Most Muscat Bailey A wines have unique characters, such as a light mouth feel which is derived from the low concentration of proanthocyanidins (1). In addition, Muscat Bailey A grapes also biosynthesize and accumulate furaneol, suggesting that furaneol might be essential for the characteristic flavor of this wine (2). The previous study identified furaneol glucoside from the juice of Muscat Bailey A, using high-performance liquid chromatography–tandem mass spectrometry, and this was followed by its isolation from some fruits such as strawberry and tomato (3). Furaneol glucoside is a significant ‘aroma precursor of wine’ because furaneol is liberated from it during alcoholic fermentation. In this study, we have identified a glucosyltransferase gene from Muscat Bailey A (UGT85K14), which is responsible for the glucosylation of furaneol (4). Recombinant UGT85K14 expressed in Escherichia coli is able to transfer a glucose moiety from UDP-glucose to the hydroxy group of furaneol, indicating that this gene might be UDP-glucose: furaneol glucosyltransferase in Muscat Bailey A. Furaneol glucoside content in Muscat Bailey A berry during maturation might be controlled by the expression of UGT85K14 along with the biosynthesis of furaneol. On the other hand, UGT85K14 was expressed in the representative grape cultivars regardless of species. In addition to Muscat Bailey A, the corresponding genes from Pinot Noir (V. vinifera) and Concord (V. labrusca) have been identified and characterized. Sequence analysis and the characterization of recombinant proteins demonstrated that furaneol glucoside content was regulated by the biosynthesis of furaneol in grape species (V. vinifera and V. labrusca), and both species might have evolved and diverged after the molecular evolution of this gene.

1. Ichikawa, M. et al. (2011) Food Sci. Technol. Res. 17, 335-339. 2. Kobayashi, H. et al. (2013) Vitis 52, 9-11. 3. Sasaki, K. et al. (2015) Am. J. Enol. Vitic. 66, 91-94. 4. Sasaki, K. et al. (2015) J. Exp. Bot. 66, 6167-6174.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster


Kanako Sasaki*, Gen Ikoma, Hideki Takase, Hironori Kobayashi, Hironori Matsuo, Ryoji Takata

*Research Laboratories for Wine

Contact the author


IVES Conference Series | Macrowine | Macrowine 2016


Related articles…

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.