Macrowine 2021
IVES 9 IVES Conference Series 9 Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

Abstract

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide. Most Muscat Bailey A wines have unique characters, such as a light mouth feel which is derived from the low concentration of proanthocyanidins (1). In addition, Muscat Bailey A grapes also biosynthesize and accumulate furaneol, suggesting that furaneol might be essential for the characteristic flavor of this wine (2). The previous study identified furaneol glucoside from the juice of Muscat Bailey A, using high-performance liquid chromatography–tandem mass spectrometry, and this was followed by its isolation from some fruits such as strawberry and tomato (3). Furaneol glucoside is a significant ‘aroma precursor of wine’ because furaneol is liberated from it during alcoholic fermentation. In this study, we have identified a glucosyltransferase gene from Muscat Bailey A (UGT85K14), which is responsible for the glucosylation of furaneol (4). Recombinant UGT85K14 expressed in Escherichia coli is able to transfer a glucose moiety from UDP-glucose to the hydroxy group of furaneol, indicating that this gene might be UDP-glucose: furaneol glucosyltransferase in Muscat Bailey A. Furaneol glucoside content in Muscat Bailey A berry during maturation might be controlled by the expression of UGT85K14 along with the biosynthesis of furaneol. On the other hand, UGT85K14 was expressed in the representative grape cultivars regardless of species. In addition to Muscat Bailey A, the corresponding genes from Pinot Noir (V. vinifera) and Concord (V. labrusca) have been identified and characterized. Sequence analysis and the characterization of recombinant proteins demonstrated that furaneol glucoside content was regulated by the biosynthesis of furaneol in grape species (V. vinifera and V. labrusca), and both species might have evolved and diverged after the molecular evolution of this gene.

References
1. Ichikawa, M. et al. (2011) Food Sci. Technol. Res. 17, 335-339. 2. Kobayashi, H. et al. (2013) Vitis 52, 9-11. 3. Sasaki, K. et al. (2015) Am. J. Enol. Vitic. 66, 91-94. 4. Sasaki, K. et al. (2015) J. Exp. Bot. 66, 6167-6174.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Kanako Sasaki*, Gen Ikoma, Hideki Takase, Hironori Kobayashi, Hironori Matsuo, Ryoji Takata

*Research Laboratories for Wine

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.