Macrowine 2021
IVES 9 IVES Conference Series 9 Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

Abstract

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide. Most Muscat Bailey A wines have unique characters, such as a light mouth feel which is derived from the low concentration of proanthocyanidins (1). In addition, Muscat Bailey A grapes also biosynthesize and accumulate furaneol, suggesting that furaneol might be essential for the characteristic flavor of this wine (2). The previous study identified furaneol glucoside from the juice of Muscat Bailey A, using high-performance liquid chromatography–tandem mass spectrometry, and this was followed by its isolation from some fruits such as strawberry and tomato (3). Furaneol glucoside is a significant ‘aroma precursor of wine’ because furaneol is liberated from it during alcoholic fermentation. In this study, we have identified a glucosyltransferase gene from Muscat Bailey A (UGT85K14), which is responsible for the glucosylation of furaneol (4). Recombinant UGT85K14 expressed in Escherichia coli is able to transfer a glucose moiety from UDP-glucose to the hydroxy group of furaneol, indicating that this gene might be UDP-glucose: furaneol glucosyltransferase in Muscat Bailey A. Furaneol glucoside content in Muscat Bailey A berry during maturation might be controlled by the expression of UGT85K14 along with the biosynthesis of furaneol. On the other hand, UGT85K14 was expressed in the representative grape cultivars regardless of species. In addition to Muscat Bailey A, the corresponding genes from Pinot Noir (V. vinifera) and Concord (V. labrusca) have been identified and characterized. Sequence analysis and the characterization of recombinant proteins demonstrated that furaneol glucoside content was regulated by the biosynthesis of furaneol in grape species (V. vinifera and V. labrusca), and both species might have evolved and diverged after the molecular evolution of this gene.

References
1. Ichikawa, M. et al. (2011) Food Sci. Technol. Res. 17, 335-339. 2. Kobayashi, H. et al. (2013) Vitis 52, 9-11. 3. Sasaki, K. et al. (2015) Am. J. Enol. Vitic. 66, 91-94. 4. Sasaki, K. et al. (2015) J. Exp. Bot. 66, 6167-6174.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Kanako Sasaki*, Gen Ikoma, Hideki Takase, Hironori Kobayashi, Hironori Matsuo, Ryoji Takata

*Research Laboratories for Wine

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.