Macrowine 2021
IVES 9 IVES Conference Series 9 Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

Abstract

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide. Most Muscat Bailey A wines have unique characters, such as a light mouth feel which is derived from the low concentration of proanthocyanidins (1). In addition, Muscat Bailey A grapes also biosynthesize and accumulate furaneol, suggesting that furaneol might be essential for the characteristic flavor of this wine (2). The previous study identified furaneol glucoside from the juice of Muscat Bailey A, using high-performance liquid chromatography–tandem mass spectrometry, and this was followed by its isolation from some fruits such as strawberry and tomato (3). Furaneol glucoside is a significant ‘aroma precursor of wine’ because furaneol is liberated from it during alcoholic fermentation. In this study, we have identified a glucosyltransferase gene from Muscat Bailey A (UGT85K14), which is responsible for the glucosylation of furaneol (4). Recombinant UGT85K14 expressed in Escherichia coli is able to transfer a glucose moiety from UDP-glucose to the hydroxy group of furaneol, indicating that this gene might be UDP-glucose: furaneol glucosyltransferase in Muscat Bailey A. Furaneol glucoside content in Muscat Bailey A berry during maturation might be controlled by the expression of UGT85K14 along with the biosynthesis of furaneol. On the other hand, UGT85K14 was expressed in the representative grape cultivars regardless of species. In addition to Muscat Bailey A, the corresponding genes from Pinot Noir (V. vinifera) and Concord (V. labrusca) have been identified and characterized. Sequence analysis and the characterization of recombinant proteins demonstrated that furaneol glucoside content was regulated by the biosynthesis of furaneol in grape species (V. vinifera and V. labrusca), and both species might have evolved and diverged after the molecular evolution of this gene.

References
1. Ichikawa, M. et al. (2011) Food Sci. Technol. Res. 17, 335-339. 2. Kobayashi, H. et al. (2013) Vitis 52, 9-11. 3. Sasaki, K. et al. (2015) Am. J. Enol. Vitic. 66, 91-94. 4. Sasaki, K. et al. (2015) J. Exp. Bot. 66, 6167-6174.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Kanako Sasaki*, Gen Ikoma, Hideki Takase, Hironori Kobayashi, Hironori Matsuo, Ryoji Takata

*Research Laboratories for Wine

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L
[Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.