GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Exploring the factors affecting spatio‐temporal variation in grapevine powdery mildew

Exploring the factors affecting spatio‐temporal variation in grapevine powdery mildew

Abstract

Context and purpose of the study ‐ The spatial distribution of powdery mildew is often heterogeneous between neighboring plots, with higher disease pressure in certain places that can be considered as disease “hotspots”. The position of hotspots can vary over the years, even if some plots consistently present a higher vulnerability over time. This spatio‐temporal heterogeneity makes it difficult to obtain accurate prediction by epidemiological models that are fed by meteorological variables coming from weather stations that are not in close proximity to the vineyards or are spatialized over large cell grids. The aim of the project was to explore the role of environmental/agronomic factors involved in powdery mildew pressure variation in time and at the plot and regional scale.

Material and methods ‐ To do so, a series of variables were monitored in 10 different vineyards, in the Beaune region (Bourgogne) of France, over two years. These factors included agronomic descriptors and weather variables. Weather data were acquired at the plot scale. Disease symptoms were observed weekly on leaves and grapes, highlighting inter‐plot variation in disease indicators.

Results ‐ The factors that most impacted this variability were relative humidity, rain, leaf wetness, vigor and phenology. A more in‐depth study of the interactions between these factors will help to disentangle the complex effects of the environment on powdery mildew inter‐plot heterogeneity. Relative humidity and leaf wetness appeared as the most closely correlated variables to powdery mildew onset and pressure. Undoubtedly these results need to be further confirmed and quantified through more extended surveys, but they indicate interesting directions for the improvement of predictive models of powdery mildew.

 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Romane MELYON‐DELAGE (1), Benjamin BOIS (2), Sébastien ZITO (2), Mario REGA (2), Guillaume GARIN (1), Amelia CAFFARRA (1)

(1) itk, Cap Alpha, Avenue de l’Europe, 34830 Clapiers, France
(2) CRC, Biogéoscience, Université de Bourgogne Franche Comté, 2 Bld Gabriel, 21000 Dijon, France

Contact the author

Keywords

Correlation, Heterogeneity, Humidity, Leaf Wetness, local effects 

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Exemples de zonage au Chili et en Amérique Latine

Ce document présente la situation viticole des appellations d’origine en Argentine, Brésil, Chili et Uruguay.
L’étude s’est restreinte uniquement à ces 4 pays, bien qu’il en existe d’autres avec une production viticole d’une certaine importance.

Agronomic behaviour of a native grapevine cultivar from the North of Spain (Vitis vinifera L.) in a mountain viticulture area and in a coastal zone

A work involving the finding, the description and the recovery of old grapevine varieties from the north and north east of Spain was begun in the CSIC in the year 1987.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

From the “climats de Bourgogne” to the terroir in bottles

From a chemical composition point of view, wine is the result of complex interplays between environmental, genetic and human factors. The notion of terroir in viticulture involves the vine and its environment, including phenology, geography, geology, pedology and local climate of a vineyard, along with human inputs.

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.