Macrowine 2021
IVES 9 IVES Conference Series 9 Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Abstract

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine. The species responsible for this fermentation step belong to the Pediococci, Lactobacilli and Oenococci genera. Only Oenococcus oeni and Lactobacillus plantarum have been commercialised. The former is the dominant species that is often found in both spontaneous and inoculated fermentations. In spite of inoculation MLF is quite unstable and a successful fermentation is not always guaranteed. Sluggish or stuck fermentations may occur due to many physico-chemical factors. Also, the interactions between the yeast and bacteria during the vinification process play an important role in the success of MLF. Therefore, appropriate selection of strains is important, unfortunately selecting strains is time consuming and limited only to specific winemaking conditions. To overcome this, research has investigated strain improvement, however recombinant technology is controversial. The use of non-recombinant techniques such as mutagenesis, hybridisation and Directed Evolution has become popular. The aim of this study is to optimise yeast-bacteria interactions by use of Directed Evolution as a tool to improve lactic acid bacteria, in this way, try and guarantee the success of MLF. Two S. cerevisiae strains (Cross Evolution® and EC1118®) were used as selective pressures for O oeni S5 populations. The bacterial populations were exposed to synthetic wine fermentations for 30 and 50 generations after which 30 bacterial isolates were evolved using both yeast and were characterised for fermentation efficacy. The results show that the general performance of the isolates was improved in comparison to the parental strain. Only 3 isolates after 30 generations showed a specific improvement when inoculated with ‘driver’ yeast than with other yeast strains. After 50 generations all the strains showed improvement in terms of fermentation rates, but not all strains had a higher fermentation efficacy in comparison to the parent strain. This study shows the potential of Directed Evolution as a tool for strain improvement using a biotic selective pressure as opposed to physico-chemical selective pressures. It also, shows the possibility of improving yeast-bacteria interactions by having a tailor-made pair for successful AF and MLF.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Seipati Tenyane*, Debra Rossouw, Florian Bauer

*Stellenbosch Universiy

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.