Macrowine 2021
IVES 9 IVES Conference Series 9 Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Abstract

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine. The species responsible for this fermentation step belong to the Pediococci, Lactobacilli and Oenococci genera. Only Oenococcus oeni and Lactobacillus plantarum have been commercialised. The former is the dominant species that is often found in both spontaneous and inoculated fermentations. In spite of inoculation MLF is quite unstable and a successful fermentation is not always guaranteed. Sluggish or stuck fermentations may occur due to many physico-chemical factors. Also, the interactions between the yeast and bacteria during the vinification process play an important role in the success of MLF. Therefore, appropriate selection of strains is important, unfortunately selecting strains is time consuming and limited only to specific winemaking conditions. To overcome this, research has investigated strain improvement, however recombinant technology is controversial. The use of non-recombinant techniques such as mutagenesis, hybridisation and Directed Evolution has become popular. The aim of this study is to optimise yeast-bacteria interactions by use of Directed Evolution as a tool to improve lactic acid bacteria, in this way, try and guarantee the success of MLF. Two S. cerevisiae strains (Cross Evolution® and EC1118®) were used as selective pressures for O oeni S5 populations. The bacterial populations were exposed to synthetic wine fermentations for 30 and 50 generations after which 30 bacterial isolates were evolved using both yeast and were characterised for fermentation efficacy. The results show that the general performance of the isolates was improved in comparison to the parental strain. Only 3 isolates after 30 generations showed a specific improvement when inoculated with ‘driver’ yeast than with other yeast strains. After 50 generations all the strains showed improvement in terms of fermentation rates, but not all strains had a higher fermentation efficacy in comparison to the parent strain. This study shows the potential of Directed Evolution as a tool for strain improvement using a biotic selective pressure as opposed to physico-chemical selective pressures. It also, shows the possibility of improving yeast-bacteria interactions by having a tailor-made pair for successful AF and MLF.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Seipati Tenyane*, Debra Rossouw, Florian Bauer

*Stellenbosch Universiy

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.