Macrowine 2021
IVES 9 IVES Conference Series 9 Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Abstract

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine. The species responsible for this fermentation step belong to the Pediococci, Lactobacilli and Oenococci genera. Only Oenococcus oeni and Lactobacillus plantarum have been commercialised. The former is the dominant species that is often found in both spontaneous and inoculated fermentations. In spite of inoculation MLF is quite unstable and a successful fermentation is not always guaranteed. Sluggish or stuck fermentations may occur due to many physico-chemical factors. Also, the interactions between the yeast and bacteria during the vinification process play an important role in the success of MLF. Therefore, appropriate selection of strains is important, unfortunately selecting strains is time consuming and limited only to specific winemaking conditions. To overcome this, research has investigated strain improvement, however recombinant technology is controversial. The use of non-recombinant techniques such as mutagenesis, hybridisation and Directed Evolution has become popular. The aim of this study is to optimise yeast-bacteria interactions by use of Directed Evolution as a tool to improve lactic acid bacteria, in this way, try and guarantee the success of MLF. Two S. cerevisiae strains (Cross Evolution® and EC1118®) were used as selective pressures for O oeni S5 populations. The bacterial populations were exposed to synthetic wine fermentations for 30 and 50 generations after which 30 bacterial isolates were evolved using both yeast and were characterised for fermentation efficacy. The results show that the general performance of the isolates was improved in comparison to the parental strain. Only 3 isolates after 30 generations showed a specific improvement when inoculated with ‘driver’ yeast than with other yeast strains. After 50 generations all the strains showed improvement in terms of fermentation rates, but not all strains had a higher fermentation efficacy in comparison to the parent strain. This study shows the potential of Directed Evolution as a tool for strain improvement using a biotic selective pressure as opposed to physico-chemical selective pressures. It also, shows the possibility of improving yeast-bacteria interactions by having a tailor-made pair for successful AF and MLF.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Seipati Tenyane*, Debra Rossouw, Florian Bauer

*Stellenbosch Universiy

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

Trans-resveratrol concentrations in wines Cabernet Sauvignon from Chile

This study evaluated the levels of trans-resveratrol in commercial wines made from Cabernet Sauvignon grapes from different valleys of Chile stilbenes. The Cabernet Sauvignon is the most planted variety in Chile, being 38% of the total vineyard country. Chile is the fourth largest wine exporter in the world, so it is important to evaluate the Cabernet-Sauvignon wines in their concentration levels of trans-resveratrol and its relation to the benefits provided to human health in moderate consumption. Evaluation comprises commercial wines from different valleys of Chile and its relationship with climatic characteristics, soil and vineyard handling.