Macrowine 2021
IVES 9 IVES Conference Series 9 Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Abstract

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine. The species responsible for this fermentation step belong to the Pediococci, Lactobacilli and Oenococci genera. Only Oenococcus oeni and Lactobacillus plantarum have been commercialised. The former is the dominant species that is often found in both spontaneous and inoculated fermentations. In spite of inoculation MLF is quite unstable and a successful fermentation is not always guaranteed. Sluggish or stuck fermentations may occur due to many physico-chemical factors. Also, the interactions between the yeast and bacteria during the vinification process play an important role in the success of MLF. Therefore, appropriate selection of strains is important, unfortunately selecting strains is time consuming and limited only to specific winemaking conditions. To overcome this, research has investigated strain improvement, however recombinant technology is controversial. The use of non-recombinant techniques such as mutagenesis, hybridisation and Directed Evolution has become popular. The aim of this study is to optimise yeast-bacteria interactions by use of Directed Evolution as a tool to improve lactic acid bacteria, in this way, try and guarantee the success of MLF. Two S. cerevisiae strains (Cross Evolution® and EC1118®) were used as selective pressures for O oeni S5 populations. The bacterial populations were exposed to synthetic wine fermentations for 30 and 50 generations after which 30 bacterial isolates were evolved using both yeast and were characterised for fermentation efficacy. The results show that the general performance of the isolates was improved in comparison to the parental strain. Only 3 isolates after 30 generations showed a specific improvement when inoculated with ‘driver’ yeast than with other yeast strains. After 50 generations all the strains showed improvement in terms of fermentation rates, but not all strains had a higher fermentation efficacy in comparison to the parent strain. This study shows the potential of Directed Evolution as a tool for strain improvement using a biotic selective pressure as opposed to physico-chemical selective pressures. It also, shows the possibility of improving yeast-bacteria interactions by having a tailor-made pair for successful AF and MLF.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Seipati Tenyane*, Debra Rossouw, Florian Bauer

*Stellenbosch Universiy

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.