Macrowine 2021
IVES 9 IVES Conference Series 9 Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Abstract

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine. The species responsible for this fermentation step belong to the Pediococci, Lactobacilli and Oenococci genera. Only Oenococcus oeni and Lactobacillus plantarum have been commercialised. The former is the dominant species that is often found in both spontaneous and inoculated fermentations. In spite of inoculation MLF is quite unstable and a successful fermentation is not always guaranteed. Sluggish or stuck fermentations may occur due to many physico-chemical factors. Also, the interactions between the yeast and bacteria during the vinification process play an important role in the success of MLF. Therefore, appropriate selection of strains is important, unfortunately selecting strains is time consuming and limited only to specific winemaking conditions. To overcome this, research has investigated strain improvement, however recombinant technology is controversial. The use of non-recombinant techniques such as mutagenesis, hybridisation and Directed Evolution has become popular. The aim of this study is to optimise yeast-bacteria interactions by use of Directed Evolution as a tool to improve lactic acid bacteria, in this way, try and guarantee the success of MLF. Two S. cerevisiae strains (Cross Evolution® and EC1118®) were used as selective pressures for O oeni S5 populations. The bacterial populations were exposed to synthetic wine fermentations for 30 and 50 generations after which 30 bacterial isolates were evolved using both yeast and were characterised for fermentation efficacy. The results show that the general performance of the isolates was improved in comparison to the parental strain. Only 3 isolates after 30 generations showed a specific improvement when inoculated with ‘driver’ yeast than with other yeast strains. After 50 generations all the strains showed improvement in terms of fermentation rates, but not all strains had a higher fermentation efficacy in comparison to the parent strain. This study shows the potential of Directed Evolution as a tool for strain improvement using a biotic selective pressure as opposed to physico-chemical selective pressures. It also, shows the possibility of improving yeast-bacteria interactions by having a tailor-made pair for successful AF and MLF.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Seipati Tenyane*, Debra Rossouw, Florian Bauer

*Stellenbosch Universiy

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Ellagitannin, anthocyanin and woody volatile composition of Cabernet Sauvignon wines aged in oak barrels for 12 months was evaluated. Depending on the container where malolactic fermentation (MLF) was carried out, two wine modalities were investigated: wines with MLF carried out in stainless steel tanks and barrel-fermented wines. Three toasting methods (medium toast, MT; medium toast with watering, MTAA; noisette) were considered for ageing of each wine modality. Sensory analyses (triangle and rating tests) were also performed. Two-way ANOVA of the raw experimental data revealed that the toasting method and the container where MLF took place, as well as the interaction between both factors, have a significant influence (p < 0.05) on ellagitannin, anthocyanin and woody volatile profiles of Cabernet Sauvignon wines.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Trans-resveratrol concentrations in wines Cabernet Sauvignon from Chile

This study evaluated the levels of trans-resveratrol in commercial wines made from Cabernet Sauvignon grapes from different valleys of Chile stilbenes. The Cabernet Sauvignon is the most planted variety in Chile, being 38% of the total vineyard country. Chile is the fourth largest wine exporter in the world, so it is important to evaluate the Cabernet-Sauvignon wines in their concentration levels of trans-resveratrol and its relation to the benefits provided to human health in moderate consumption. Evaluation comprises commercial wines from different valleys of Chile and its relationship with climatic characteristics, soil and vineyard handling.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.