Macrowine 2021
IVES 9 IVES Conference Series 9 Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

Abstract

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated. As the aromatic signature of wine aging bouquet results in a complex mixture of odorants, reconstitution experiments represent a powerful strategy to provide confirmation of odorant identification and understand how sensory interactions between these aromatic compounds modify the overall perception of wine aroma. In that context, a multiple step approach, combining sensory evaluations of red Bordeaux wines and aromatic reconstitutions of wines extract fractions, was used to identify other molecular markers involved. One wine expressing both a high aging-bouquet score and a high mint nuance received particular attention. Various reconstitution and omission tests highlighted the contribution of two specific fractions to the perceived intensity of mint aroma. Then, gas-chromatography coupled to olfactometry and mass spectrometry was applied to those two targeted fractions to identify chemical compound(s) responsible for the mint nuance. A similar analytical process was applied to homologous fractions of minty essential oils to help in characterization and interpretation of the mass spectrometry data. This approach resulted in the detection of piperitone , a monoterpene ketone with an odor reminiscent of mint. The sensory importance of piperitone was also underlined, as its addition at levels found in wines produced an increase in the perceived intensity of the minty character, both in aromatic reconstitution and in wine. Interestingly, piperitone was found at significantly higher concentrations in wines with an aging bouquet, which highlighted for the first time its contribution to the positive mint aroma of fine aged red Bordeaux wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Magali Picard*, Georgia Lytra, Gilles De Revel, Jean-Christophe Barbe, Sophie Tempere, Stéphanie Marchand

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Capture depletion of grapevine DNA: an approach to advance the study of microbial community in wine

The use of next-generation sequencing (NGS) has helped understand microbial genetics in oenology. Current studies mainly focus on barcoded amplicon NGS but not shotgun sequencing, which is useful for functional analyses. Since the high percentage of grapevine DNA conceals the microbial DNA in must, the majority of sequencing data is wasted in bioinformatic analyses. Here we present capture depletion of grapevine whole genome DNA.