Macrowine 2021
IVES 9 IVES Conference Series 9 Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

Abstract

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated. As the aromatic signature of wine aging bouquet results in a complex mixture of odorants, reconstitution experiments represent a powerful strategy to provide confirmation of odorant identification and understand how sensory interactions between these aromatic compounds modify the overall perception of wine aroma. In that context, a multiple step approach, combining sensory evaluations of red Bordeaux wines and aromatic reconstitutions of wines extract fractions, was used to identify other molecular markers involved. One wine expressing both a high aging-bouquet score and a high mint nuance received particular attention. Various reconstitution and omission tests highlighted the contribution of two specific fractions to the perceived intensity of mint aroma. Then, gas-chromatography coupled to olfactometry and mass spectrometry was applied to those two targeted fractions to identify chemical compound(s) responsible for the mint nuance. A similar analytical process was applied to homologous fractions of minty essential oils to help in characterization and interpretation of the mass spectrometry data. This approach resulted in the detection of piperitone , a monoterpene ketone with an odor reminiscent of mint. The sensory importance of piperitone was also underlined, as its addition at levels found in wines produced an increase in the perceived intensity of the minty character, both in aromatic reconstitution and in wine. Interestingly, piperitone was found at significantly higher concentrations in wines with an aging bouquet, which highlighted for the first time its contribution to the positive mint aroma of fine aged red Bordeaux wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Magali Picard*, Georgia Lytra, Gilles De Revel, Jean-Christophe Barbe, Sophie Tempere, Stéphanie Marchand

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.