Macrowine 2021
IVES 9 IVES Conference Series 9 Oenological features of Sangiovese wine from vinification of whole grape berries

Oenological features of Sangiovese wine from vinification of whole grape berries

Abstract

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels. Grapes of the first lot were destemmed using a vibrating destemmer that was able to maintain the berry integrity, the others with a traditional crusher-destemmer. After barrels filling, the temperature of whole berry grape must was lower than that of crushed grape must (22°C vs 24°C). The growth of S. cerevisiae strain, inoculated at 5×10^5cell/mL, was slower in whole berry grape must due to the lower mass temperature and the progressive rupture of berries which caused a sort of dilution of yeast population during their exponential growth phase. Indeed, the maximum population density was reached at the third day of fermentation in the crushed grape must (over 8×10^7 cell/mL) while in the whole berry must was reached at day 6 (about 3.5×10^7cell/mL). The warming profile of crushed grapes vinification was faster and reached higher temperature (3.7°C/day up to Tmax of 38.9°C at day 4) than that recorded in whole berry vinification (1.7°C/day up to Tmax of 33.8°C at day 7). In the former, the yeast population dropped rapidly as a consequence of high temperature and high ethanol content (about 11% at day 4) leading to a faster decrease in mass temperature and making it necessary a second inoculum of the S. cerevisiae strain at day 11 to ensure the completion of the alcoholic fermentation. Conversely, the progressive rupture of cooler berries in the whole berry vinification limited the temperature rise, favored the yeast activity, and lead to a slower decrease of mass temperature after day 8 at which about 95% of sugars were fermented. Wines were racked at day 26 (crushed grapes) and 27 (whole berry grapes). Residual sugars were below 1g/L with an ethanol content ranging from 13.8 to 13.5% in crushed and whole grapes wines, respectively. No differences were found on color intensity and total phenolic index. However, wine from crushed grapes vinification possessed higher contents of hydroxybenzoic acids (+27%) and flavan-3-ol monomers (+20%) whereas wine produced by whole berry vinification were characterized by higher contents of anthocyanin glucosides (+33%) and flavonols (+41%). Such differences are potentially able to influence several long-term sensory quality.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Yuri Romboli*, Giacomo Buscioni, Massimo Vincenzini, Silvia Mangani

*Department of Management of Agriculture

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.