Macrowine 2021
IVES 9 IVES Conference Series 9 Oenological features of Sangiovese wine from vinification of whole grape berries

Oenological features of Sangiovese wine from vinification of whole grape berries

Abstract

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels. Grapes of the first lot were destemmed using a vibrating destemmer that was able to maintain the berry integrity, the others with a traditional crusher-destemmer. After barrels filling, the temperature of whole berry grape must was lower than that of crushed grape must (22°C vs 24°C). The growth of S. cerevisiae strain, inoculated at 5×10^5cell/mL, was slower in whole berry grape must due to the lower mass temperature and the progressive rupture of berries which caused a sort of dilution of yeast population during their exponential growth phase. Indeed, the maximum population density was reached at the third day of fermentation in the crushed grape must (over 8×10^7 cell/mL) while in the whole berry must was reached at day 6 (about 3.5×10^7cell/mL). The warming profile of crushed grapes vinification was faster and reached higher temperature (3.7°C/day up to Tmax of 38.9°C at day 4) than that recorded in whole berry vinification (1.7°C/day up to Tmax of 33.8°C at day 7). In the former, the yeast population dropped rapidly as a consequence of high temperature and high ethanol content (about 11% at day 4) leading to a faster decrease in mass temperature and making it necessary a second inoculum of the S. cerevisiae strain at day 11 to ensure the completion of the alcoholic fermentation. Conversely, the progressive rupture of cooler berries in the whole berry vinification limited the temperature rise, favored the yeast activity, and lead to a slower decrease of mass temperature after day 8 at which about 95% of sugars were fermented. Wines were racked at day 26 (crushed grapes) and 27 (whole berry grapes). Residual sugars were below 1g/L with an ethanol content ranging from 13.8 to 13.5% in crushed and whole grapes wines, respectively. No differences were found on color intensity and total phenolic index. However, wine from crushed grapes vinification possessed higher contents of hydroxybenzoic acids (+27%) and flavan-3-ol monomers (+20%) whereas wine produced by whole berry vinification were characterized by higher contents of anthocyanin glucosides (+33%) and flavonols (+41%). Such differences are potentially able to influence several long-term sensory quality.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Yuri Romboli*, Giacomo Buscioni, Massimo Vincenzini, Silvia Mangani

*Department of Management of Agriculture

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.