Macrowine 2021
IVES 9 IVES Conference Series 9 Oenological features of Sangiovese wine from vinification of whole grape berries

Oenological features of Sangiovese wine from vinification of whole grape berries

Abstract

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels. Grapes of the first lot were destemmed using a vibrating destemmer that was able to maintain the berry integrity, the others with a traditional crusher-destemmer. After barrels filling, the temperature of whole berry grape must was lower than that of crushed grape must (22°C vs 24°C). The growth of S. cerevisiae strain, inoculated at 5×10^5cell/mL, was slower in whole berry grape must due to the lower mass temperature and the progressive rupture of berries which caused a sort of dilution of yeast population during their exponential growth phase. Indeed, the maximum population density was reached at the third day of fermentation in the crushed grape must (over 8×10^7 cell/mL) while in the whole berry must was reached at day 6 (about 3.5×10^7cell/mL). The warming profile of crushed grapes vinification was faster and reached higher temperature (3.7°C/day up to Tmax of 38.9°C at day 4) than that recorded in whole berry vinification (1.7°C/day up to Tmax of 33.8°C at day 7). In the former, the yeast population dropped rapidly as a consequence of high temperature and high ethanol content (about 11% at day 4) leading to a faster decrease in mass temperature and making it necessary a second inoculum of the S. cerevisiae strain at day 11 to ensure the completion of the alcoholic fermentation. Conversely, the progressive rupture of cooler berries in the whole berry vinification limited the temperature rise, favored the yeast activity, and lead to a slower decrease of mass temperature after day 8 at which about 95% of sugars were fermented. Wines were racked at day 26 (crushed grapes) and 27 (whole berry grapes). Residual sugars were below 1g/L with an ethanol content ranging from 13.8 to 13.5% in crushed and whole grapes wines, respectively. No differences were found on color intensity and total phenolic index. However, wine from crushed grapes vinification possessed higher contents of hydroxybenzoic acids (+27%) and flavan-3-ol monomers (+20%) whereas wine produced by whole berry vinification were characterized by higher contents of anthocyanin glucosides (+33%) and flavonols (+41%). Such differences are potentially able to influence several long-term sensory quality.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Yuri Romboli*, Giacomo Buscioni, Massimo Vincenzini, Silvia Mangani

*Department of Management of Agriculture

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).