Macrowine 2021
IVES 9 IVES Conference Series 9 Oenological features of Sangiovese wine from vinification of whole grape berries

Oenological features of Sangiovese wine from vinification of whole grape berries

Abstract

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels. Grapes of the first lot were destemmed using a vibrating destemmer that was able to maintain the berry integrity, the others with a traditional crusher-destemmer. After barrels filling, the temperature of whole berry grape must was lower than that of crushed grape must (22°C vs 24°C). The growth of S. cerevisiae strain, inoculated at 5×10^5cell/mL, was slower in whole berry grape must due to the lower mass temperature and the progressive rupture of berries which caused a sort of dilution of yeast population during their exponential growth phase. Indeed, the maximum population density was reached at the third day of fermentation in the crushed grape must (over 8×10^7 cell/mL) while in the whole berry must was reached at day 6 (about 3.5×10^7cell/mL). The warming profile of crushed grapes vinification was faster and reached higher temperature (3.7°C/day up to Tmax of 38.9°C at day 4) than that recorded in whole berry vinification (1.7°C/day up to Tmax of 33.8°C at day 7). In the former, the yeast population dropped rapidly as a consequence of high temperature and high ethanol content (about 11% at day 4) leading to a faster decrease in mass temperature and making it necessary a second inoculum of the S. cerevisiae strain at day 11 to ensure the completion of the alcoholic fermentation. Conversely, the progressive rupture of cooler berries in the whole berry vinification limited the temperature rise, favored the yeast activity, and lead to a slower decrease of mass temperature after day 8 at which about 95% of sugars were fermented. Wines were racked at day 26 (crushed grapes) and 27 (whole berry grapes). Residual sugars were below 1g/L with an ethanol content ranging from 13.8 to 13.5% in crushed and whole grapes wines, respectively. No differences were found on color intensity and total phenolic index. However, wine from crushed grapes vinification possessed higher contents of hydroxybenzoic acids (+27%) and flavan-3-ol monomers (+20%) whereas wine produced by whole berry vinification were characterized by higher contents of anthocyanin glucosides (+33%) and flavonols (+41%). Such differences are potentially able to influence several long-term sensory quality.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Yuri Romboli*, Giacomo Buscioni, Massimo Vincenzini, Silvia Mangani

*Department of Management of Agriculture

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.