Macrowine 2021
IVES 9 IVES Conference Series 9 Oenological features of Sangiovese wine from vinification of whole grape berries

Oenological features of Sangiovese wine from vinification of whole grape berries

Abstract

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels. Grapes of the first lot were destemmed using a vibrating destemmer that was able to maintain the berry integrity, the others with a traditional crusher-destemmer. After barrels filling, the temperature of whole berry grape must was lower than that of crushed grape must (22°C vs 24°C). The growth of S. cerevisiae strain, inoculated at 5×10^5cell/mL, was slower in whole berry grape must due to the lower mass temperature and the progressive rupture of berries which caused a sort of dilution of yeast population during their exponential growth phase. Indeed, the maximum population density was reached at the third day of fermentation in the crushed grape must (over 8×10^7 cell/mL) while in the whole berry must was reached at day 6 (about 3.5×10^7cell/mL). The warming profile of crushed grapes vinification was faster and reached higher temperature (3.7°C/day up to Tmax of 38.9°C at day 4) than that recorded in whole berry vinification (1.7°C/day up to Tmax of 33.8°C at day 7). In the former, the yeast population dropped rapidly as a consequence of high temperature and high ethanol content (about 11% at day 4) leading to a faster decrease in mass temperature and making it necessary a second inoculum of the S. cerevisiae strain at day 11 to ensure the completion of the alcoholic fermentation. Conversely, the progressive rupture of cooler berries in the whole berry vinification limited the temperature rise, favored the yeast activity, and lead to a slower decrease of mass temperature after day 8 at which about 95% of sugars were fermented. Wines were racked at day 26 (crushed grapes) and 27 (whole berry grapes). Residual sugars were below 1g/L with an ethanol content ranging from 13.8 to 13.5% in crushed and whole grapes wines, respectively. No differences were found on color intensity and total phenolic index. However, wine from crushed grapes vinification possessed higher contents of hydroxybenzoic acids (+27%) and flavan-3-ol monomers (+20%) whereas wine produced by whole berry vinification were characterized by higher contents of anthocyanin glucosides (+33%) and flavonols (+41%). Such differences are potentially able to influence several long-term sensory quality.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Yuri Romboli*, Giacomo Buscioni, Massimo Vincenzini, Silvia Mangani

*Department of Management of Agriculture

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.