Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of bottle closure type on sensory characteristics of Chasselas wines

Effects of bottle closure type on sensory characteristics of Chasselas wines

Abstract

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants. Although must handling is done at the very beginning of the winemaking process, exposure of the must to O2 at this early stage is profoundly connected with other steps at a much later stage of the winemaking process, this is particularly true for post-bottling O2 exposure and therefore bottle closure selection. Post-bottling wine ageing is a slow and complex process, in which the bottle closures play a fundamental role, due to their O2 permeability. During this period, sensory characteristics of the wine are likely to change as a result of the exposure to O2. For these reasons, increasing numbers of industry professionals agreed that consistent O2 transmission is important and that chosen bottle closures should be matched with the wine type. The aim of this work was to determine the impact of dissolved oxygen and bottle closure oxygen transfer rates on the evolution of wines made from Chasselas grapes with different levels of O2 protection (protected and surexposed). The resulting wines were bottled with different amounts of dissolved O2 (DO) and sealed with three different corks (two co-extruded and one agglomerated type) and one screwcap. O2 measurements were taken after bottling on a weekly bases during the first month of storage, and after 1, 3, 6, 12, 18 and 22 months after bottling. The evolution of total O2 transfer through identical closures into empty bottles, previously purged with nitrogen was also investigated. As already described, FSO2 decreased during bottle storage, with a rapid decline in the first 3 months followed by a slower decline after 6 months of storage. The extent of FSO2 decline was essentially affected by DO at bottling and by must management. A panel of 20 judges was trained to carry out a sensory evaluation of the wines, by Flash Profile and Napping, 6, 12, 18 and 22 months after bottling. Beyond the period of 12 months, oxidative and reductive profiles could be observed mainly related to the type of closure and to must management. At 22 months, discriminatory tests allowed us to distinguish the impact of each closures. These preliminary results are expected to increase our understanding for the optimum balance of pre-fermentative/post-bottling O2 exposure of Chasselas wines, and help guide winemakers in their choice for the perfectly adapted bottle closures.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Benoit Bach*, Jean Baptiste Dieval, Julien Ducruet, Olivier Paviot, Pascale Deneulin, Patrik Schönenberger, Pierrick Rebenaque, Stephane Vidal

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.