Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Abstract

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics. Glycosidically bound simple phenols are considered a natural stock of these compounds, because they can be hydrolyzed during the winemaking production releasing the corresponding free forms and constituting a potential contribution to final sensory profile. Adapting the method of Barnaba and colleagues, target and untargeted approaches were developed. On-line purification was performed with a HyperSepTM Retain PEP spe cartridge, the chromatographic separation was performed with an Acquity UPLC BEH C18 analytical column, managing a water-acetonitrile gradient from 5% to 100% of organic solvent. Mass spectra were acquired in full MS-data dependent MS/MS analysis at mass resolving power of 140.000, in negative ion mode and with a heated electrospray. The mass spectrometer operated using following parameters: spray voltage, 2.80 kV; sheath gas flow rate, 30 arbitrary units; capillary temperature, 310 °C. The aim of the study was to increase the understanding of hybrid grape varieties phenolic composition, combining on-line SPE clean-up for reducing matrix interference with an ultra-high liquid chromatography coupled to high resolution mass spectrometry. In particular, the phenolic composition of 4 hybrid (red: Cabernet Cantor and Prior; white: Muscaris and Solaris) and 2 European (red: Merlot; white: Chardonnay) grape varieties was investigated, focusing on free and glycosidically bound simple phenols and considering compounds distribution in pulp, skin and seeds. Through target approach 58 free simple phenols and 7 glucosidic precursors were quantified with quantification limits ranging from 0.001 to 1 mg Kg-1, calibration R2 of 0.99 for over 94% of compounds, and precision (R.S.D.%) always better than 12%. The untargeted approach was aimed to tentatively identify glycosylated precursors of selected free simple phenols in the forms of -hexoside, -pentoside, -hexoside-hexoside, -hexoside-pentoside, -pentoside-hexoside and -pentoside-pentoside derivatives on the basis of accurate mass, isotopic pattern and MS/MS fragmentation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Chiara Barnaba*, Giorgio Nicolini, Mattia Giacomelli, Roberto Larcher, Tiziana Nardin

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.