Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Abstract

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics. Glycosidically bound simple phenols are considered a natural stock of these compounds, because they can be hydrolyzed during the winemaking production releasing the corresponding free forms and constituting a potential contribution to final sensory profile. Adapting the method of Barnaba and colleagues, target and untargeted approaches were developed. On-line purification was performed with a HyperSepTM Retain PEP spe cartridge, the chromatographic separation was performed with an Acquity UPLC BEH C18 analytical column, managing a water-acetonitrile gradient from 5% to 100% of organic solvent. Mass spectra were acquired in full MS-data dependent MS/MS analysis at mass resolving power of 140.000, in negative ion mode and with a heated electrospray. The mass spectrometer operated using following parameters: spray voltage, 2.80 kV; sheath gas flow rate, 30 arbitrary units; capillary temperature, 310 °C. The aim of the study was to increase the understanding of hybrid grape varieties phenolic composition, combining on-line SPE clean-up for reducing matrix interference with an ultra-high liquid chromatography coupled to high resolution mass spectrometry. In particular, the phenolic composition of 4 hybrid (red: Cabernet Cantor and Prior; white: Muscaris and Solaris) and 2 European (red: Merlot; white: Chardonnay) grape varieties was investigated, focusing on free and glycosidically bound simple phenols and considering compounds distribution in pulp, skin and seeds. Through target approach 58 free simple phenols and 7 glucosidic precursors were quantified with quantification limits ranging from 0.001 to 1 mg Kg-1, calibration R2 of 0.99 for over 94% of compounds, and precision (R.S.D.%) always better than 12%. The untargeted approach was aimed to tentatively identify glycosylated precursors of selected free simple phenols in the forms of -hexoside, -pentoside, -hexoside-hexoside, -hexoside-pentoside, -pentoside-hexoside and -pentoside-pentoside derivatives on the basis of accurate mass, isotopic pattern and MS/MS fragmentation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Chiara Barnaba*, Giorgio Nicolini, Mattia Giacomelli, Roberto Larcher, Tiziana Nardin

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested.

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.