Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Abstract

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics. Glycosidically bound simple phenols are considered a natural stock of these compounds, because they can be hydrolyzed during the winemaking production releasing the corresponding free forms and constituting a potential contribution to final sensory profile. Adapting the method of Barnaba and colleagues, target and untargeted approaches were developed. On-line purification was performed with a HyperSepTM Retain PEP spe cartridge, the chromatographic separation was performed with an Acquity UPLC BEH C18 analytical column, managing a water-acetonitrile gradient from 5% to 100% of organic solvent. Mass spectra were acquired in full MS-data dependent MS/MS analysis at mass resolving power of 140.000, in negative ion mode and with a heated electrospray. The mass spectrometer operated using following parameters: spray voltage, 2.80 kV; sheath gas flow rate, 30 arbitrary units; capillary temperature, 310 °C. The aim of the study was to increase the understanding of hybrid grape varieties phenolic composition, combining on-line SPE clean-up for reducing matrix interference with an ultra-high liquid chromatography coupled to high resolution mass spectrometry. In particular, the phenolic composition of 4 hybrid (red: Cabernet Cantor and Prior; white: Muscaris and Solaris) and 2 European (red: Merlot; white: Chardonnay) grape varieties was investigated, focusing on free and glycosidically bound simple phenols and considering compounds distribution in pulp, skin and seeds. Through target approach 58 free simple phenols and 7 glucosidic precursors were quantified with quantification limits ranging from 0.001 to 1 mg Kg-1, calibration R2 of 0.99 for over 94% of compounds, and precision (R.S.D.%) always better than 12%. The untargeted approach was aimed to tentatively identify glycosylated precursors of selected free simple phenols in the forms of -hexoside, -pentoside, -hexoside-hexoside, -hexoside-pentoside, -pentoside-hexoside and -pentoside-pentoside derivatives on the basis of accurate mass, isotopic pattern and MS/MS fragmentation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Chiara Barnaba*, Giorgio Nicolini, Mattia Giacomelli, Roberto Larcher, Tiziana Nardin

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.