Macrowine 2021
IVES 9 IVES Conference Series 9 Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Abstract

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples. Vintages 2012 and 2014 were characterized by extended botrytis infection, delayed sugar maturity and unripe tannins. In contrast, in 2013 the weather conditions were ideal, resulting in full sugar maturity, low botrytis infection and extended and full tannin maturation. These differences were depicted in our measurements: in 2013, the mDP values of the grape skins were higher than the corresponding values of the 2012 and 2014 samples, (especially those of the polymeric fractions) and were characterized by increased percentages of (-)-epicatechin units. Unlike grape skins, mDP values of grape seeds were not affected by vintage and their values were almost constant. Wine mDP values of 2013 were also increased compared to the relevant values of the other vintages; however, this increase was not as profound as that observed in grape skins, probably due to tannin modifications that occurred during vinification. Our results suggested that grape skin proanthocyanidin composition may be an indicator of grape tannin maturity. Among the skin proanthocyanidin constituents, it is suggested that (-)-epi-catechin content can be strongly influenced by the vintage year and its importance in wine quality should be further investigated.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Stamatina Kallithraka*, Ioannis Paraskevopoulos, Katerina Kanellopoulou, Sofoklis Petropoulos, Yorgos Kotseridis

*Agricultural University of Athens

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.