Macrowine 2021
IVES 9 IVES Conference Series 9 Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Abstract

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate. They were present in wines with a single or both enantiomeric forms in various ratios, according to age. On the contrary of most of the ethyl esters, produced during alcoholic fermentation, these esters levels increased gradually over time and then stabilize after about four to five years. For those present under two enantiomeric forms, ratios were modified during ageing. For each ester of this type, the most powerful enantiomer, from an olfactive point of view, was found in relatively small amount at the end of alcoholic fermentation and was then particularly accumulated. The sensorial role of these chiral compounds has been established, revealing their role as natural enhancers of black-berry, red-berry and fresh-fruit aromas. Our data corroborate and specify those of Lytra et al. [2] and Pineau et al. [3] highlighting the impact of substituted esters in fruity expression of red wines. Considering their dynamic evolution of their concentration, these compounds seem to be produced on one hand during alcoholic fermentation by Saccharomyces cerevisiae from amino acids and on the other hand during aging by a chemical esterification from the corresponding substituted acids as previously suggested by Diaz-Maroto et al. [4]. In order to determine the precursors of these esters and to consider synthesis pathways, we have developed a method aimed at quantifying their corresponding substituted acids (2-hydroxy-4-methylpentanoic acid, 2-methylbutanoic acid, and 3-hydroxybutanoic acid) including, if applicable, the enantiomeric forms. Thanks to the quantification of these compounds, the chemical formation of substituted esters during aging as well as the mechanisms of formation of these compounds during alcoholic and malolactic fermentation was described.

References: 1. Guth, H. (1997) J. Agric. Food Chem.45:3027-3032. 2. Lytra, G., Tempere, S., Le Floch, A., de Revel, G., and Barbe, J.-C. (2013) J. Agric. Food Chem. 61:8504-8513. 3. Pineau, B., Barbe, J.-C., Van Leeuwen, C., Dubourdieu, D. (2009) J. Agric. Food Chem. 57:3702-3708. 4. Diaz-Maroto, M.C., Schneider, R., Baumes, R. (2005) J. Agric. Food Chem. 53: 3503-3509.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Georgia Lytra*, Jean-Christophe Barbe, Margaux Cameleyre, Sophie Tempère

*Université de Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.