Macrowine 2021
IVES 9 IVES Conference Series 9 Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Abstract

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate. They were present in wines with a single or both enantiomeric forms in various ratios, according to age. On the contrary of most of the ethyl esters, produced during alcoholic fermentation, these esters levels increased gradually over time and then stabilize after about four to five years. For those present under two enantiomeric forms, ratios were modified during ageing. For each ester of this type, the most powerful enantiomer, from an olfactive point of view, was found in relatively small amount at the end of alcoholic fermentation and was then particularly accumulated. The sensorial role of these chiral compounds has been established, revealing their role as natural enhancers of black-berry, red-berry and fresh-fruit aromas. Our data corroborate and specify those of Lytra et al. [2] and Pineau et al. [3] highlighting the impact of substituted esters in fruity expression of red wines. Considering their dynamic evolution of their concentration, these compounds seem to be produced on one hand during alcoholic fermentation by Saccharomyces cerevisiae from amino acids and on the other hand during aging by a chemical esterification from the corresponding substituted acids as previously suggested by Diaz-Maroto et al. [4]. In order to determine the precursors of these esters and to consider synthesis pathways, we have developed a method aimed at quantifying their corresponding substituted acids (2-hydroxy-4-methylpentanoic acid, 2-methylbutanoic acid, and 3-hydroxybutanoic acid) including, if applicable, the enantiomeric forms. Thanks to the quantification of these compounds, the chemical formation of substituted esters during aging as well as the mechanisms of formation of these compounds during alcoholic and malolactic fermentation was described.

References: 1. Guth, H. (1997) J. Agric. Food Chem.45:3027-3032. 2. Lytra, G., Tempere, S., Le Floch, A., de Revel, G., and Barbe, J.-C. (2013) J. Agric. Food Chem. 61:8504-8513. 3. Pineau, B., Barbe, J.-C., Van Leeuwen, C., Dubourdieu, D. (2009) J. Agric. Food Chem. 57:3702-3708. 4. Diaz-Maroto, M.C., Schneider, R., Baumes, R. (2005) J. Agric. Food Chem. 53: 3503-3509.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Georgia Lytra*, Jean-Christophe Barbe, Margaux Cameleyre, Sophie Tempère

*Université de Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.