Macrowine 2021
IVES 9 IVES Conference Series 9 Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Abstract

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate. They were present in wines with a single or both enantiomeric forms in various ratios, according to age. On the contrary of most of the ethyl esters, produced during alcoholic fermentation, these esters levels increased gradually over time and then stabilize after about four to five years. For those present under two enantiomeric forms, ratios were modified during ageing. For each ester of this type, the most powerful enantiomer, from an olfactive point of view, was found in relatively small amount at the end of alcoholic fermentation and was then particularly accumulated. The sensorial role of these chiral compounds has been established, revealing their role as natural enhancers of black-berry, red-berry and fresh-fruit aromas. Our data corroborate and specify those of Lytra et al. [2] and Pineau et al. [3] highlighting the impact of substituted esters in fruity expression of red wines. Considering their dynamic evolution of their concentration, these compounds seem to be produced on one hand during alcoholic fermentation by Saccharomyces cerevisiae from amino acids and on the other hand during aging by a chemical esterification from the corresponding substituted acids as previously suggested by Diaz-Maroto et al. [4]. In order to determine the precursors of these esters and to consider synthesis pathways, we have developed a method aimed at quantifying their corresponding substituted acids (2-hydroxy-4-methylpentanoic acid, 2-methylbutanoic acid, and 3-hydroxybutanoic acid) including, if applicable, the enantiomeric forms. Thanks to the quantification of these compounds, the chemical formation of substituted esters during aging as well as the mechanisms of formation of these compounds during alcoholic and malolactic fermentation was described.

References: 1. Guth, H. (1997) J. Agric. Food Chem.45:3027-3032. 2. Lytra, G., Tempere, S., Le Floch, A., de Revel, G., and Barbe, J.-C. (2013) J. Agric. Food Chem. 61:8504-8513. 3. Pineau, B., Barbe, J.-C., Van Leeuwen, C., Dubourdieu, D. (2009) J. Agric. Food Chem. 57:3702-3708. 4. Diaz-Maroto, M.C., Schneider, R., Baumes, R. (2005) J. Agric. Food Chem. 53: 3503-3509.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Georgia Lytra*, Jean-Christophe Barbe, Margaux Cameleyre, Sophie Tempère

*Université de Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.