Macrowine 2021
IVES 9 IVES Conference Series 9 Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Abstract

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate. They were present in wines with a single or both enantiomeric forms in various ratios, according to age. On the contrary of most of the ethyl esters, produced during alcoholic fermentation, these esters levels increased gradually over time and then stabilize after about four to five years. For those present under two enantiomeric forms, ratios were modified during ageing. For each ester of this type, the most powerful enantiomer, from an olfactive point of view, was found in relatively small amount at the end of alcoholic fermentation and was then particularly accumulated. The sensorial role of these chiral compounds has been established, revealing their role as natural enhancers of black-berry, red-berry and fresh-fruit aromas. Our data corroborate and specify those of Lytra et al. [2] and Pineau et al. [3] highlighting the impact of substituted esters in fruity expression of red wines. Considering their dynamic evolution of their concentration, these compounds seem to be produced on one hand during alcoholic fermentation by Saccharomyces cerevisiae from amino acids and on the other hand during aging by a chemical esterification from the corresponding substituted acids as previously suggested by Diaz-Maroto et al. [4]. In order to determine the precursors of these esters and to consider synthesis pathways, we have developed a method aimed at quantifying their corresponding substituted acids (2-hydroxy-4-methylpentanoic acid, 2-methylbutanoic acid, and 3-hydroxybutanoic acid) including, if applicable, the enantiomeric forms. Thanks to the quantification of these compounds, the chemical formation of substituted esters during aging as well as the mechanisms of formation of these compounds during alcoholic and malolactic fermentation was described.

References: 1. Guth, H. (1997) J. Agric. Food Chem.45:3027-3032. 2. Lytra, G., Tempere, S., Le Floch, A., de Revel, G., and Barbe, J.-C. (2013) J. Agric. Food Chem. 61:8504-8513. 3. Pineau, B., Barbe, J.-C., Van Leeuwen, C., Dubourdieu, D. (2009) J. Agric. Food Chem. 57:3702-3708. 4. Diaz-Maroto, M.C., Schneider, R., Baumes, R. (2005) J. Agric. Food Chem. 53: 3503-3509.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Georgia Lytra*, Jean-Christophe Barbe, Margaux Cameleyre, Sophie Tempère

*Université de Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.