Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Abstract

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds. Thus, increasing amino acid and glutathione content on grapes plays a crucial role in winemaking. Nitrogen foliar fertilization can be a useful strategy to achieve this aim because of the quick and efficient assimilation of applied products by plants. Therefore, the effect of different foliar nitrogen applications on must amino acid and glutathione composition on a Cabernet Sauvignon vineyard was studied in order to increase the grape quality. Nitrogen treatments applied to the grapevines were urea (Ur), urea plus sulphur (Ur+S), arginine (Arg) and two commercial foliar fertilizers with amino acids on its composition (Basfoliar Algae (BA) and Nutrimyr Thiols (NT)). Two applications of 1 kg N/ha were sprayed first at the beginning of veraison and two weeks later. Must amino acid and glutathione were analyzed by HPLC-DAD. Oenological parameters for each sample were also determined. Commercial nitrogen sprays increased the amount of aspartic acid, glutamic acid, serine, glutamine, alanine and ornithine (NT), whereas BA increased the content of serine, glutamine, threonine, arginine, methionine and proline. Ur+S treatment had a better assimilation than Ur, increasing content of aspartic acid, glutamic acid, serine, glycine and methionine. Arg treatment did not increase amino acid content, however it increased the amount of easily extractable anthocyanins, total anthocyanins and total polyphenol index. Foliar nitrogen applications of Arg, NT and BA increased considerably the glutathione concentration, from 2.62 mg/L in control samples to 26.48, 41.51 and 27.6 mg/L in Arg, NT and BA musts, respectively. These findings have oenological and viticultural interest for improving grape quality by enhancing must amino acid composition in high proline accumulating varieties as Cabernet Sauvignon.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Garde-Cerdan*, Ana Gonzalo-Diago, Ana Martínez-Gil, Gaston Gutiérrez-Gamboa, Yerko Moreno-Simunovic

*Instituto de Ciencias de la Vid y del Vino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.