Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Abstract

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds. Thus, increasing amino acid and glutathione content on grapes plays a crucial role in winemaking. Nitrogen foliar fertilization can be a useful strategy to achieve this aim because of the quick and efficient assimilation of applied products by plants. Therefore, the effect of different foliar nitrogen applications on must amino acid and glutathione composition on a Cabernet Sauvignon vineyard was studied in order to increase the grape quality. Nitrogen treatments applied to the grapevines were urea (Ur), urea plus sulphur (Ur+S), arginine (Arg) and two commercial foliar fertilizers with amino acids on its composition (Basfoliar Algae (BA) and Nutrimyr Thiols (NT)). Two applications of 1 kg N/ha were sprayed first at the beginning of veraison and two weeks later. Must amino acid and glutathione were analyzed by HPLC-DAD. Oenological parameters for each sample were also determined. Commercial nitrogen sprays increased the amount of aspartic acid, glutamic acid, serine, glutamine, alanine and ornithine (NT), whereas BA increased the content of serine, glutamine, threonine, arginine, methionine and proline. Ur+S treatment had a better assimilation than Ur, increasing content of aspartic acid, glutamic acid, serine, glycine and methionine. Arg treatment did not increase amino acid content, however it increased the amount of easily extractable anthocyanins, total anthocyanins and total polyphenol index. Foliar nitrogen applications of Arg, NT and BA increased considerably the glutathione concentration, from 2.62 mg/L in control samples to 26.48, 41.51 and 27.6 mg/L in Arg, NT and BA musts, respectively. These findings have oenological and viticultural interest for improving grape quality by enhancing must amino acid composition in high proline accumulating varieties as Cabernet Sauvignon.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Garde-Cerdan*, Ana Gonzalo-Diago, Ana Martínez-Gil, Gaston Gutiérrez-Gamboa, Yerko Moreno-Simunovic

*Instituto de Ciencias de la Vid y del Vino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).