Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Abstract

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds. Thus, increasing amino acid and glutathione content on grapes plays a crucial role in winemaking. Nitrogen foliar fertilization can be a useful strategy to achieve this aim because of the quick and efficient assimilation of applied products by plants. Therefore, the effect of different foliar nitrogen applications on must amino acid and glutathione composition on a Cabernet Sauvignon vineyard was studied in order to increase the grape quality. Nitrogen treatments applied to the grapevines were urea (Ur), urea plus sulphur (Ur+S), arginine (Arg) and two commercial foliar fertilizers with amino acids on its composition (Basfoliar Algae (BA) and Nutrimyr Thiols (NT)). Two applications of 1 kg N/ha were sprayed first at the beginning of veraison and two weeks later. Must amino acid and glutathione were analyzed by HPLC-DAD. Oenological parameters for each sample were also determined. Commercial nitrogen sprays increased the amount of aspartic acid, glutamic acid, serine, glutamine, alanine and ornithine (NT), whereas BA increased the content of serine, glutamine, threonine, arginine, methionine and proline. Ur+S treatment had a better assimilation than Ur, increasing content of aspartic acid, glutamic acid, serine, glycine and methionine. Arg treatment did not increase amino acid content, however it increased the amount of easily extractable anthocyanins, total anthocyanins and total polyphenol index. Foliar nitrogen applications of Arg, NT and BA increased considerably the glutathione concentration, from 2.62 mg/L in control samples to 26.48, 41.51 and 27.6 mg/L in Arg, NT and BA musts, respectively. These findings have oenological and viticultural interest for improving grape quality by enhancing must amino acid composition in high proline accumulating varieties as Cabernet Sauvignon.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Garde-Cerdan*, Ana Gonzalo-Diago, Ana Martínez-Gil, Gaston Gutiérrez-Gamboa, Yerko Moreno-Simunovic

*Instituto de Ciencias de la Vid y del Vino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.