Macrowine 2021
IVES 9 IVES Conference Series 9 Monitoring of Pesticide Residues from Vine to Wine

Monitoring of Pesticide Residues from Vine to Wine

Abstract

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines. Although no Maximum Residue Limits (MRLs) are set so far for the wine, powerful analysis methods have to be developed in order to detect low levels of compounds and prohibited molecules in particular. Moreover, organic winegrowers are concerned about contamination problems that may arise in the field or during the winemaking. In this work, a liquid chromatography – tandem mass spectrometry (LC-MS/MS) method is used to monitor about 190 pesticide residues. The extraction step is carried out either by QuEChERS (Quick, Easy, Cheap, Efficient, Rugged and Safe) or by SPE (Solid-Phase Extraction) for liquid samples. Optimisations were performed for the extraction of analytes from vine leaves (grinding, QuEChERS extraction and purification step) and validation parameters were controlled for different matrices (vine leaves, grapes, wines, lees) in terms of precision and accuracy. Several experiments were then conducted to monitor pesticide residues. For two vintages, vine leaves were analysed during the summer for a conventional plot as well as for an organic plot next to it. Sampling was done before and 48 hours after each phytosanitary treatment to evaluate contamination of the organic plot and the persistence of residues over time. Grapes, musts and wines were also analysed and when possible compared to the applied phytosanitary scheme to evaluate the persistence of compounds used in the vineyard. Sampling was also carried out all along the vinification process, from ripe berries to the wine during ageing in order to observe on one hand if contamination phenomena took place and eventually detect critical steps and on the other hand to estimate the transfer of active substances all along the process. Preliminary experiments were also conducted on the effect of alcoholic fermentation on pesticide residues at laboratory scale. Persistence and transfer are variable depending on molecules.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Céline Franc*, Gilles de Revel

*Université de Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Influence of toasting oak wood on ellagitannin structures

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition.

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.