Macrowine 2021
IVES 9 IVES Conference Series 9 Monitoring of Pesticide Residues from Vine to Wine

Monitoring of Pesticide Residues from Vine to Wine

Abstract

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines. Although no Maximum Residue Limits (MRLs) are set so far for the wine, powerful analysis methods have to be developed in order to detect low levels of compounds and prohibited molecules in particular. Moreover, organic winegrowers are concerned about contamination problems that may arise in the field or during the winemaking. In this work, a liquid chromatography – tandem mass spectrometry (LC-MS/MS) method is used to monitor about 190 pesticide residues. The extraction step is carried out either by QuEChERS (Quick, Easy, Cheap, Efficient, Rugged and Safe) or by SPE (Solid-Phase Extraction) for liquid samples. Optimisations were performed for the extraction of analytes from vine leaves (grinding, QuEChERS extraction and purification step) and validation parameters were controlled for different matrices (vine leaves, grapes, wines, lees) in terms of precision and accuracy. Several experiments were then conducted to monitor pesticide residues. For two vintages, vine leaves were analysed during the summer for a conventional plot as well as for an organic plot next to it. Sampling was done before and 48 hours after each phytosanitary treatment to evaluate contamination of the organic plot and the persistence of residues over time. Grapes, musts and wines were also analysed and when possible compared to the applied phytosanitary scheme to evaluate the persistence of compounds used in the vineyard. Sampling was also carried out all along the vinification process, from ripe berries to the wine during ageing in order to observe on one hand if contamination phenomena took place and eventually detect critical steps and on the other hand to estimate the transfer of active substances all along the process. Preliminary experiments were also conducted on the effect of alcoholic fermentation on pesticide residues at laboratory scale. Persistence and transfer are variable depending on molecules.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Céline Franc*, Gilles de Revel

*Université de Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.