Macrowine 2021
IVES 9 IVES Conference Series 9 Monitoring of Pesticide Residues from Vine to Wine

Monitoring of Pesticide Residues from Vine to Wine

Abstract

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines. Although no Maximum Residue Limits (MRLs) are set so far for the wine, powerful analysis methods have to be developed in order to detect low levels of compounds and prohibited molecules in particular. Moreover, organic winegrowers are concerned about contamination problems that may arise in the field or during the winemaking. In this work, a liquid chromatography – tandem mass spectrometry (LC-MS/MS) method is used to monitor about 190 pesticide residues. The extraction step is carried out either by QuEChERS (Quick, Easy, Cheap, Efficient, Rugged and Safe) or by SPE (Solid-Phase Extraction) for liquid samples. Optimisations were performed for the extraction of analytes from vine leaves (grinding, QuEChERS extraction and purification step) and validation parameters were controlled for different matrices (vine leaves, grapes, wines, lees) in terms of precision and accuracy. Several experiments were then conducted to monitor pesticide residues. For two vintages, vine leaves were analysed during the summer for a conventional plot as well as for an organic plot next to it. Sampling was done before and 48 hours after each phytosanitary treatment to evaluate contamination of the organic plot and the persistence of residues over time. Grapes, musts and wines were also analysed and when possible compared to the applied phytosanitary scheme to evaluate the persistence of compounds used in the vineyard. Sampling was also carried out all along the vinification process, from ripe berries to the wine during ageing in order to observe on one hand if contamination phenomena took place and eventually detect critical steps and on the other hand to estimate the transfer of active substances all along the process. Preliminary experiments were also conducted on the effect of alcoholic fermentation on pesticide residues at laboratory scale. Persistence and transfer are variable depending on molecules.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Céline Franc*, Gilles de Revel

*Université de Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.