Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of some agronomic practices on grape skins anthocyanin content

Impact of some agronomic practices on grape skins anthocyanin content

Abstract

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management. Therefore, it is mandatory to improve grape anthocyanic content, namely by viticulture practices preferably those that can contribute to maintain or increase the sustainability of the ecosystem. The aim of this work was to study how different agronomic practices (cover crops, irrigation and crop level), in a Mediterranean Portuguese vineyard with cv. Trincadeira, one of the most important cultivar in this region, influence the amount of anthocyanins in grapes and therefore affect the wine quality. The research was carried out in 2010 on a vineyard located at Évora, south of Portugal, in a 9 year-old grapevines. The trained system was a vertical shoot positioning with a pair of movable wires, being the vines spur-pruned on a bilateral Royat cordon system. The experimental design was a split-split-plot with 4 replications and three factors per replicate: two types of soil management between rows, three different irrigation management and two crop levels, in a total of 48 elemental plots. Each elemental plot had 4 adjacent rows with 12 vines each, and all the measurements were made in the two central rows. The two types of soil management studied between rows, already existing in the vineyard, were: Traditional Tillage (TT) (soil cultivation to a height of 15 cm, 3 times during spring) and Natural Cover Crops (NCC) with resident species. In both treatments a 0.8 m-wide herbicide strip was achieved beneath the vines allowing a width of the planter of about 1.7 m. The three different irrigation managements studied were: Standard – rainfed, Early Irrigation (EI) – weekly irrigation of 15.6 mm since three weeks before veraison until one week before harvesting, and Late Irrigation (LI) – 12 mm application per week since one week after veraison until two weeks before picking. At harvest, berries were randomly hand-picked and analyzed. Anthocyanins were determined by HPLC-DAD. In the edapho-climatic conditions of Alentejo, the irrigation affected berry weight, pH and titratable acidity and also induced significative differences in individual anthocyanins. Concerning soil management, natural cover crop seems to be a promising practice when comparing to traditional tillage, since grapes from NCC presented higher values of soluble solids and anthocyanins, besides being an advantageous technique for soil conservation, a real problem in our conditions. Diminishing crop level originated grapes with higher soluble solids, lower acidity, higher pH and higher content of individual anthocyanins.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Cabrita*, Ana Maria Costa Freitas, Eva Peréz-Álvarez, Joao Barroso, M. Rosario Salinas, Raquel Garcia, Rosario Sánchez-Gomez, Teresa Garde-Cerdán

*Universidade de Évora

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.