GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Abstract

Context and purpose of the study ‐ Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine nutritional status derived from proximal or remote spectral observations. However, a key challenge is the discrimination between mineral deficiencies and water stress related issues, often coexisting under low vigor conditions. In addition several mineral disorders are associated to a decrease in chlorophyll concentration in leaves resulting in a wide array of symptoms classified as chlorosis. Despite clearly associated to their origin, visible symptoms appear too late for supporting an efficient mineral management; thus, non‐destructive early detection of either asymptomatic excess or deficient status become a challenging task of precision viticulture. This work evaluates the Vis‐NIR reflectance spectra and the sensitivity of the derived‐spectral indices to detect nitrogen deficiency in grapevines.

Material and methods ‐ Well N‐fertilized vs. unfertilized vines were compared over two seasons (2016 and 2017) on Vitis vinifera L. cv. Barbera potted vines. For each treatment, 24 leaves from eight representative vines were tagged in order to collect, at different phenological stages, contact Vis‐NIR spectra and perform physiological measurements. The performance of several spectral vegetation indices sensitive to different biophysical (i.e. chlorophyll and carotenoids content, leaf area index) and physiological parameters (light use efficiency) was measured by means of a sensitivity (signal to noise ratio) analysis. Leaf greenness index was monitored with a handheld chlorophyll meter SPAD 502 whilst single‐leaf gas exchanges were assessed by using a handheld analyzer. Multispectral analysis was associated to a rigorous ground‐truthing as it concerns shoot growth, yield, fruit composition and pruning weight.

Results – In both years the differential fertilization increased leaf N concentration of N+ vines at veraison. Vine performance varied according to plant vigor and nutritional status. N+ increased canopy growth, vine productivity, and bunch compactness whilst N0 enhanced the proportion of shot berries and reduced titratable acidity and malate in juice. N deficiency resulted in lower SPAD readings and assimilation rates as compared to well N‐fertilized vines. N0 vs N+ contact Vis‐NIR spectra differed in Green and Red‐edge regions with faster responses on basal leaves. Data were associated to a different sensitivity of Vis‐NIR spectral indices specially when based on the Red‐edge bands showing higher efficiency in detecting leaf N concentration since early stages of canopy growth.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Matteo GATTI (1,2), Alessandra GARAVANI (1,2), Alberto VERCESI (1), Cecilia SQUERI (1), Michele CROCI (1,2), Ferdinando CALEGARI (2), Massimo VINCINI (2), Stefano PONI (1,2)

(1) DIPROVES Università Cattolica del Sacro Cuore, Via E. Parmense 84, I-29122 Piacenza, Italy
(2) CRAST Università Cattolica del Sacro Cuore, Via E. Parmense 84, I-29122 Piacenza, Italy

Contact the author

Keywords

Mineral nutrition, Visual symptoms, Leaf age, Assimilation, Yield components, Phenotyping

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Unraveling grapevine resilience to water and nutrient limitations

Water and nutrient availability significantly impact crop yield, thus the application of sustainable strategies towards efficient water use and nutrient absorption by plants is needed.

Study of the volatile aroma profile of five Italian grape varieties submitted to controlled postharvest withering

Wines made with grapes submitted to postharvest dehydration are often referred to as “passito” or “straw wines.” This distinct style of winemaking consists of a process of water loss that allows the berries to undergo a mild water stress and senescence process [1].

High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

Aceto balsamico di Modena IGP (ABM) is an Italian worldwide appreciated PGI (Protected Geographical Indication) vinegar,  obtained from cooked and/or concentrated grape must (at least 20% of the volume), with the addition of at least 10% of wine vinegar and a maximum 2% of caramel for color stability (EU Reg. 583/ 2009).

Image based vineyard yield prediction using empirical models to estimate bunch occlusion by leaves

Vineyard yield estimation brings several advantages to the entire wine industry. It can provide useful information to support decision making regarding bunch thinning practices, harvest logistics and marketing strategies, as well as to manage stored wine and cellar tanks allocation. Today, this estimation is performed mainly using manual methods based on destructive bunch sampling.

Smartphone application use as a tool for water supply management

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management