GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Abstract

Context and purpose of the study ‐ Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine nutritional status derived from proximal or remote spectral observations. However, a key challenge is the discrimination between mineral deficiencies and water stress related issues, often coexisting under low vigor conditions. In addition several mineral disorders are associated to a decrease in chlorophyll concentration in leaves resulting in a wide array of symptoms classified as chlorosis. Despite clearly associated to their origin, visible symptoms appear too late for supporting an efficient mineral management; thus, non‐destructive early detection of either asymptomatic excess or deficient status become a challenging task of precision viticulture. This work evaluates the Vis‐NIR reflectance spectra and the sensitivity of the derived‐spectral indices to detect nitrogen deficiency in grapevines.

Material and methods ‐ Well N‐fertilized vs. unfertilized vines were compared over two seasons (2016 and 2017) on Vitis vinifera L. cv. Barbera potted vines. For each treatment, 24 leaves from eight representative vines were tagged in order to collect, at different phenological stages, contact Vis‐NIR spectra and perform physiological measurements. The performance of several spectral vegetation indices sensitive to different biophysical (i.e. chlorophyll and carotenoids content, leaf area index) and physiological parameters (light use efficiency) was measured by means of a sensitivity (signal to noise ratio) analysis. Leaf greenness index was monitored with a handheld chlorophyll meter SPAD 502 whilst single‐leaf gas exchanges were assessed by using a handheld analyzer. Multispectral analysis was associated to a rigorous ground‐truthing as it concerns shoot growth, yield, fruit composition and pruning weight.

Results – In both years the differential fertilization increased leaf N concentration of N+ vines at veraison. Vine performance varied according to plant vigor and nutritional status. N+ increased canopy growth, vine productivity, and bunch compactness whilst N0 enhanced the proportion of shot berries and reduced titratable acidity and malate in juice. N deficiency resulted in lower SPAD readings and assimilation rates as compared to well N‐fertilized vines. N0 vs N+ contact Vis‐NIR spectra differed in Green and Red‐edge regions with faster responses on basal leaves. Data were associated to a different sensitivity of Vis‐NIR spectral indices specially when based on the Red‐edge bands showing higher efficiency in detecting leaf N concentration since early stages of canopy growth.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Matteo GATTI (1,2), Alessandra GARAVANI (1,2), Alberto VERCESI (1), Cecilia SQUERI (1), Michele CROCI (1,2), Ferdinando CALEGARI (2), Massimo VINCINI (2), Stefano PONI (1,2)

(1) DIPROVES Università Cattolica del Sacro Cuore, Via E. Parmense 84, I-29122 Piacenza, Italy
(2) CRAST Università Cattolica del Sacro Cuore, Via E. Parmense 84, I-29122 Piacenza, Italy

Contact the author

Keywords

Mineral nutrition, Visual symptoms, Leaf age, Assimilation, Yield components, Phenotyping

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

Pesticide – Free viticulture: towards agroecological wine-producing socio-ecosystems

Can we cultivate grapevine without pesticides? This is a huge challenge for this emblematic crop, which is one of the largest users of plant protection products. Pesticides are mainly used to protect the vine against leaf diseases (powdery mildew, mildew, black-rot), even in organic farming, which uses copper in particular. What are the research avenues that can help eliminate pesticides today?

Exploring diversity of grapevine responses to Flavescence dorée infection

Flavescence dorée, a serious threat to grapevine cultivation in several European Countries, is caused by phytoplasmas in the 16Sr-V ribosomal group, classified as quarantine organisms in the EU and transmitted mainly by the insect vector Scaphoideus titanus. The disease is controlled only by indirect and preventive measures, with important economic and environmental concerns. Genetic resources from the great variety of Vitis vinifera germplasm together with application of new genomic techniques could be applied to produce resistant/tolerant plants, once the genetic bases of susceptibility are elucidated. In a current Italian project (BIORES*) we are evaluating different international and local grapevine cvs. as well as microvine plants for their response to FD transmission and multiplication in controlled conditions.

Influence of soil management and vine water regime on leaf gas exchange, berry composition and quality of Chasselas wines in Switzerland

A soil management and vine irrigation trial was carried out for 4 consecutive years from 2020 to 2023 at agroscope’s experimental vineyard in leytron (Valais, Switzerland) with the Chasselas grape variety (clone 14-33/4, grafted on 5bb). Two types of soil maintenance (bare soil with chemical weeding and sown grass) coupled with two water regimes (with and without drip irrigation from flowering to veraison) were compared in a randomized design with four replicates of 10 vines each.