GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Abstract

Context and purpose of the study ‐ Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine nutritional status derived from proximal or remote spectral observations. However, a key challenge is the discrimination between mineral deficiencies and water stress related issues, often coexisting under low vigor conditions. In addition several mineral disorders are associated to a decrease in chlorophyll concentration in leaves resulting in a wide array of symptoms classified as chlorosis. Despite clearly associated to their origin, visible symptoms appear too late for supporting an efficient mineral management; thus, non‐destructive early detection of either asymptomatic excess or deficient status become a challenging task of precision viticulture. This work evaluates the Vis‐NIR reflectance spectra and the sensitivity of the derived‐spectral indices to detect nitrogen deficiency in grapevines.

Material and methods ‐ Well N‐fertilized vs. unfertilized vines were compared over two seasons (2016 and 2017) on Vitis vinifera L. cv. Barbera potted vines. For each treatment, 24 leaves from eight representative vines were tagged in order to collect, at different phenological stages, contact Vis‐NIR spectra and perform physiological measurements. The performance of several spectral vegetation indices sensitive to different biophysical (i.e. chlorophyll and carotenoids content, leaf area index) and physiological parameters (light use efficiency) was measured by means of a sensitivity (signal to noise ratio) analysis. Leaf greenness index was monitored with a handheld chlorophyll meter SPAD 502 whilst single‐leaf gas exchanges were assessed by using a handheld analyzer. Multispectral analysis was associated to a rigorous ground‐truthing as it concerns shoot growth, yield, fruit composition and pruning weight.

Results – In both years the differential fertilization increased leaf N concentration of N+ vines at veraison. Vine performance varied according to plant vigor and nutritional status. N+ increased canopy growth, vine productivity, and bunch compactness whilst N0 enhanced the proportion of shot berries and reduced titratable acidity and malate in juice. N deficiency resulted in lower SPAD readings and assimilation rates as compared to well N‐fertilized vines. N0 vs N+ contact Vis‐NIR spectra differed in Green and Red‐edge regions with faster responses on basal leaves. Data were associated to a different sensitivity of Vis‐NIR spectral indices specially when based on the Red‐edge bands showing higher efficiency in detecting leaf N concentration since early stages of canopy growth.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Matteo GATTI (1,2), Alessandra GARAVANI (1,2), Alberto VERCESI (1), Cecilia SQUERI (1), Michele CROCI (1,2), Ferdinando CALEGARI (2), Massimo VINCINI (2), Stefano PONI (1,2)

(1) DIPROVES Università Cattolica del Sacro Cuore, Via E. Parmense 84, I-29122 Piacenza, Italy
(2) CRAST Università Cattolica del Sacro Cuore, Via E. Parmense 84, I-29122 Piacenza, Italy

Contact the author

Keywords

Mineral nutrition, Visual symptoms, Leaf age, Assimilation, Yield components, Phenotyping

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods.

Influence of must fining on oxygen consumption rate, oxidation susceptibility and electrochemical characteristics of different white grape musts

AIM: Pre-fermentative fining is one of the central steps of white wine production. Mainly aiming at reducing the levels of suspended solids, juice fining can also assist in reducing the content of oxidizable phenolics and therefore the susceptibility of juice to oxidation.

Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Aim: Interactions between soil, climate and management that modulate vine growth, yield and grape composition are strongly defined by vine water availability and nutrient uptake during the season. Carbon isotope discrimination (δ13C) has been used as an integrative measurement of vine water availability during the season, with the potential to identify spatial variations of terroir in

Cultivo de la Malvasia en Tenerife

El archipiélago Canario, conocido en el pasado como las Islas del Vino, fue una gran potencia en la elaboración y comercialización del vino, sobre todo de caldos elaborados con la variedad Malvasía.