GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Abstract

Context and purpose of the study ‐ Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine nutritional status derived from proximal or remote spectral observations. However, a key challenge is the discrimination between mineral deficiencies and water stress related issues, often coexisting under low vigor conditions. In addition several mineral disorders are associated to a decrease in chlorophyll concentration in leaves resulting in a wide array of symptoms classified as chlorosis. Despite clearly associated to their origin, visible symptoms appear too late for supporting an efficient mineral management; thus, non‐destructive early detection of either asymptomatic excess or deficient status become a challenging task of precision viticulture. This work evaluates the Vis‐NIR reflectance spectra and the sensitivity of the derived‐spectral indices to detect nitrogen deficiency in grapevines.

Material and methods ‐ Well N‐fertilized vs. unfertilized vines were compared over two seasons (2016 and 2017) on Vitis vinifera L. cv. Barbera potted vines. For each treatment, 24 leaves from eight representative vines were tagged in order to collect, at different phenological stages, contact Vis‐NIR spectra and perform physiological measurements. The performance of several spectral vegetation indices sensitive to different biophysical (i.e. chlorophyll and carotenoids content, leaf area index) and physiological parameters (light use efficiency) was measured by means of a sensitivity (signal to noise ratio) analysis. Leaf greenness index was monitored with a handheld chlorophyll meter SPAD 502 whilst single‐leaf gas exchanges were assessed by using a handheld analyzer. Multispectral analysis was associated to a rigorous ground‐truthing as it concerns shoot growth, yield, fruit composition and pruning weight.

Results – In both years the differential fertilization increased leaf N concentration of N+ vines at veraison. Vine performance varied according to plant vigor and nutritional status. N+ increased canopy growth, vine productivity, and bunch compactness whilst N0 enhanced the proportion of shot berries and reduced titratable acidity and malate in juice. N deficiency resulted in lower SPAD readings and assimilation rates as compared to well N‐fertilized vines. N0 vs N+ contact Vis‐NIR spectra differed in Green and Red‐edge regions with faster responses on basal leaves. Data were associated to a different sensitivity of Vis‐NIR spectral indices specially when based on the Red‐edge bands showing higher efficiency in detecting leaf N concentration since early stages of canopy growth.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Matteo GATTI (1,2), Alessandra GARAVANI (1,2), Alberto VERCESI (1), Cecilia SQUERI (1), Michele CROCI (1,2), Ferdinando CALEGARI (2), Massimo VINCINI (2), Stefano PONI (1,2)

(1) DIPROVES Università Cattolica del Sacro Cuore, Via E. Parmense 84, I-29122 Piacenza, Italy
(2) CRAST Università Cattolica del Sacro Cuore, Via E. Parmense 84, I-29122 Piacenza, Italy

Contact the author

Keywords

Mineral nutrition, Visual symptoms, Leaf age, Assimilation, Yield components, Phenotyping

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

Estudio de fertilidad en variedades blancas en Castilla-la Mancha

La adaptación de nuevas variedades a zonas de cultivo fuera de su área de origen presenta múltiples interrogantes. En Castilla-La Mancha se está produciendo en los últimos años una gran inquietud por la diversificación y la reconversión de variedades.

Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Aim: The aim of this study was to investigate the relationship between the molecular response of grapes during postharvest dehydration and the specific environment of two naturally ventilated rooms (called ‘fruttai’), located in two different sites in Valpolicella

Exploring the genomic diversity of yeast involved in spontaneous fermentation. from studies to select autochthonous strains of different italian’s wineries to extensive phylogenetic survey about the italians’ population of s. cerevisiae

Modern winemakers must ensure effective alcoholic fermentation without losing the intrinsic biodiversity of the different oenological contexts. In this sense, the population of saccharomyces cerevisiae characteristic of wineries that traditionally do not use selected yeasts can represent an interesting reservoir of biodiversity.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.