Macrowine 2021
IVES 9 IVES Conference Series 9 Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Abstract

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues. The suitable feature of subcritical water leaching agent is its capacity to decrease dielectric constant as a function of increase in temperature, allowing a better solubility of the compounds of interest. In our study subcritical water extraction of polyphenols from red and white grape pomace from Dunkelfelder, Cabernet Franc, Merlot, and Chardonnay was performed. In semi-continuous extraction lead to crude extracts rich in different families of polyphenols. A purification step prior to industrial usage is essential. Coupling subcritical water extraction with membrane processes, due to large array of flexibility, offers a solution for the purification and fractioning of the crude extracts. The combined effects of extraction temperature (from 60 to 200 °C), pressure (from 25 to 100 bar), flow rate (1 to 10 ml/min), sample mass (5, 70) were investigated and compared to traditional solvent extraction (1/1 ethanol/water). Optimal extraction conditions were found to be 150 C and 6ml/min irrelevant of the pressure used. These conditions produced crude extracts containing 130 mg/100g DW of anthocyanins (+61% compared to traditional methods of extraction) and 2077mg/100g DW procyanidins (+23%). Subsequently to realize the purification of the crude extract, several organic membranes having differential molecular weight cut off 0.45 μm up to 200 Da were tested. The results allow evaluating both the permeate flux through the membranes and the rejection rates of the major compounds found in the crude extract. The tested membranes have differential selectivity for polysacharrides, proteins, and different families phenolic compounds (pentamers, trimers, anthocyanin, and phenolic acids) with high purity (95%). Confirming the applicability of membrane separation for the fractionation and purification of pomace extracts. More research is needed to validate the industrial up scaling and the intended application of the produced extracts.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Sami Yammine*, Martine Mietton-Peuchot, Remy Ghidossi, Robin Rabagliato, Xavier Vitrac

*University of Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.