Macrowine 2021
IVES 9 IVES Conference Series 9 Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Abstract

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues. The suitable feature of subcritical water leaching agent is its capacity to decrease dielectric constant as a function of increase in temperature, allowing a better solubility of the compounds of interest. In our study subcritical water extraction of polyphenols from red and white grape pomace from Dunkelfelder, Cabernet Franc, Merlot, and Chardonnay was performed. In semi-continuous extraction lead to crude extracts rich in different families of polyphenols. A purification step prior to industrial usage is essential. Coupling subcritical water extraction with membrane processes, due to large array of flexibility, offers a solution for the purification and fractioning of the crude extracts. The combined effects of extraction temperature (from 60 to 200 °C), pressure (from 25 to 100 bar), flow rate (1 to 10 ml/min), sample mass (5, 70) were investigated and compared to traditional solvent extraction (1/1 ethanol/water). Optimal extraction conditions were found to be 150 C and 6ml/min irrelevant of the pressure used. These conditions produced crude extracts containing 130 mg/100g DW of anthocyanins (+61% compared to traditional methods of extraction) and 2077mg/100g DW procyanidins (+23%). Subsequently to realize the purification of the crude extract, several organic membranes having differential molecular weight cut off 0.45 μm up to 200 Da were tested. The results allow evaluating both the permeate flux through the membranes and the rejection rates of the major compounds found in the crude extract. The tested membranes have differential selectivity for polysacharrides, proteins, and different families phenolic compounds (pentamers, trimers, anthocyanin, and phenolic acids) with high purity (95%). Confirming the applicability of membrane separation for the fractionation and purification of pomace extracts. More research is needed to validate the industrial up scaling and the intended application of the produced extracts.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Sami Yammine*, Martine Mietton-Peuchot, Remy Ghidossi, Robin Rabagliato, Xavier Vitrac

*University of Bordeaux

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.