Macrowine 2021
IVES 9 IVES Conference Series 9 Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Abstract

It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations. Continuously, companies are looking for the development of new products from yeast, commonly known as yeast derivatives, which are rich in polysaccharides and can guarantee the improvements of the ageing on lees but minimizing its disadvantages. These products are commonly classified as inactivated dry yeast, yeast autolysates, yeast cell walls, yeast proteic extracts and purified mannoproteins as it is defined in the Enological Codex (OIV). Normally, the yeast derivatives most used during the short ageing of wines are specific inactivated dry yeast (SIDY) selected for their high content of mannoproteins. However, there is a great variety of these products which can release different contents of polysaccharides (quantity and quality) and produce different effects on the quality of wines. For these reasons, the aim of this work was to study the effect of two different SIDY on the polysaccharidic content, colour and polyphenolic compositions of Chilean Sauvignon Blanc white wines. The wines were analysed after 2 months of treatment, 3 and 6 months in bottle. Four different fractions of polysaccharides, with different molecular weight, were identified and quantified. Wines treated with both SIDY had a higher content of polysaccharides after the ageing period and during bottle storage than control wines. No differences were found between both SIDY used. No significant difference was found in the content of total polyphenols between treated and control wines. However, some differences were found in the low molecular weight phenolic compounds (LMWPC) but depended on the SIDY used, the ageing period and the LMWPC analyzed. The use of SIDY contributed to improve the colour of wines which had a lower colour intensity and lower values of “a and b” CIELab parameters, which can allow to avoid or reduce the browning of wines.

Acknowledgements: This study was supported by CONICYT-Chile PAI N° 781403003 and FONDECYT N°1140882 Projects.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rubén Del Barrio Galán*, Álvaro Peña-Neira, Andrés Gómez Parrini

*Lallemand Inc chile y Compania limitada

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.