Macrowine 2021
IVES 9 IVES Conference Series 9 Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Abstract

It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations. Continuously, companies are looking for the development of new products from yeast, commonly known as yeast derivatives, which are rich in polysaccharides and can guarantee the improvements of the ageing on lees but minimizing its disadvantages. These products are commonly classified as inactivated dry yeast, yeast autolysates, yeast cell walls, yeast proteic extracts and purified mannoproteins as it is defined in the Enological Codex (OIV). Normally, the yeast derivatives most used during the short ageing of wines are specific inactivated dry yeast (SIDY) selected for their high content of mannoproteins. However, there is a great variety of these products which can release different contents of polysaccharides (quantity and quality) and produce different effects on the quality of wines. For these reasons, the aim of this work was to study the effect of two different SIDY on the polysaccharidic content, colour and polyphenolic compositions of Chilean Sauvignon Blanc white wines. The wines were analysed after 2 months of treatment, 3 and 6 months in bottle. Four different fractions of polysaccharides, with different molecular weight, were identified and quantified. Wines treated with both SIDY had a higher content of polysaccharides after the ageing period and during bottle storage than control wines. No differences were found between both SIDY used. No significant difference was found in the content of total polyphenols between treated and control wines. However, some differences were found in the low molecular weight phenolic compounds (LMWPC) but depended on the SIDY used, the ageing period and the LMWPC analyzed. The use of SIDY contributed to improve the colour of wines which had a lower colour intensity and lower values of “a and b” CIELab parameters, which can allow to avoid or reduce the browning of wines.

Acknowledgements: This study was supported by CONICYT-Chile PAI N° 781403003 and FONDECYT N°1140882 Projects.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rubén Del Barrio Galán*, Álvaro Peña-Neira, Andrés Gómez Parrini

*Lallemand Inc chile y Compania limitada

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L
[Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].