Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Abstract

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L). These residues can be minimized with pressing and clarification of the juice prior to fermentation, but may increase during prolonged maceration. At the same time, H2S can play a role on the formation of the important varietal thiols 3-mercapto hexanol (3MH) and 4-mercapto-4-methylpentan-2-one (4MMP) as the direct sulfur donor to E-2-hexenal or mesityl oxide, respectively. Sauvignon blanc juices from three different locations was obtained at a commercial winery in Marlborough, New Zealand. One sample (A) was collected from the receival bin and pressed to obtain 25 L of juice. Two other samples (B and C) were collected from the commercial pressing operation. The samples were cold settled, racked to glass bottles (700 mL of juice), and then 0, 2, 10 or 50 mg/L of a wettable elemental sulfur compound was added. The fermentation was carried out using Saccharomyces cerevisiae (EC1118) at 15°C. The juices showed quite different potential to produce 3MH and 3MHA, and without any added sulfur, juice A produced a high amount of 3MH (6,000 ng/L), while juices B and C showed signs of oxidation and little 3MH was formed (< 600 ng/L). The addition of 50 mg/L of elemental sulfur caused a 1.7-fold increment in 3MH for juice A. For juice B detectable levels of 3MH and 3MHA were only observed for the extreme addition of 50 mg/L S0, which led to a 20-fold increase in 3MH production for juice C. Even though the results showed a clear relation between S0 in juice and varietal thiols in wine, the deliberate increase in the fungicide use close to harvest needs to be carefully managed, as levels of unwanted reductive sulfur compounds including H2S, methanethiol and carbon disulfide in the final wine were found to increase with the higher elemental sulfur additions.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Leandro Dias Araujo*, Bruno Fedrizzi, Paul Kilmartin, Suzanne Callerot, Wessel du Toit

*University of Auckland

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Trans-resveratrol concentrations in wines Cabernet Sauvignon from Chile

This study evaluated the levels of trans-resveratrol in commercial wines made from Cabernet Sauvignon grapes from different valleys of Chile stilbenes. The Cabernet Sauvignon is the most planted variety in Chile, being 38% of the total vineyard country. Chile is the fourth largest wine exporter in the world, so it is important to evaluate the Cabernet-Sauvignon wines in their concentration levels of trans-resveratrol and its relation to the benefits provided to human health in moderate consumption. Evaluation comprises commercial wines from different valleys of Chile and its relationship with climatic characteristics, soil and vineyard handling.