Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Abstract

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L). These residues can be minimized with pressing and clarification of the juice prior to fermentation, but may increase during prolonged maceration. At the same time, H2S can play a role on the formation of the important varietal thiols 3-mercapto hexanol (3MH) and 4-mercapto-4-methylpentan-2-one (4MMP) as the direct sulfur donor to E-2-hexenal or mesityl oxide, respectively. Sauvignon blanc juices from three different locations was obtained at a commercial winery in Marlborough, New Zealand. One sample (A) was collected from the receival bin and pressed to obtain 25 L of juice. Two other samples (B and C) were collected from the commercial pressing operation. The samples were cold settled, racked to glass bottles (700 mL of juice), and then 0, 2, 10 or 50 mg/L of a wettable elemental sulfur compound was added. The fermentation was carried out using Saccharomyces cerevisiae (EC1118) at 15°C. The juices showed quite different potential to produce 3MH and 3MHA, and without any added sulfur, juice A produced a high amount of 3MH (6,000 ng/L), while juices B and C showed signs of oxidation and little 3MH was formed (< 600 ng/L). The addition of 50 mg/L of elemental sulfur caused a 1.7-fold increment in 3MH for juice A. For juice B detectable levels of 3MH and 3MHA were only observed for the extreme addition of 50 mg/L S0, which led to a 20-fold increase in 3MH production for juice C. Even though the results showed a clear relation between S0 in juice and varietal thiols in wine, the deliberate increase in the fungicide use close to harvest needs to be carefully managed, as levels of unwanted reductive sulfur compounds including H2S, methanethiol and carbon disulfide in the final wine were found to increase with the higher elemental sulfur additions.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Leandro Dias Araujo*, Bruno Fedrizzi, Paul Kilmartin, Suzanne Callerot, Wessel du Toit

*University of Auckland

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.