Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Abstract

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L). These residues can be minimized with pressing and clarification of the juice prior to fermentation, but may increase during prolonged maceration. At the same time, H2S can play a role on the formation of the important varietal thiols 3-mercapto hexanol (3MH) and 4-mercapto-4-methylpentan-2-one (4MMP) as the direct sulfur donor to E-2-hexenal or mesityl oxide, respectively. Sauvignon blanc juices from three different locations was obtained at a commercial winery in Marlborough, New Zealand. One sample (A) was collected from the receival bin and pressed to obtain 25 L of juice. Two other samples (B and C) were collected from the commercial pressing operation. The samples were cold settled, racked to glass bottles (700 mL of juice), and then 0, 2, 10 or 50 mg/L of a wettable elemental sulfur compound was added. The fermentation was carried out using Saccharomyces cerevisiae (EC1118) at 15°C. The juices showed quite different potential to produce 3MH and 3MHA, and without any added sulfur, juice A produced a high amount of 3MH (6,000 ng/L), while juices B and C showed signs of oxidation and little 3MH was formed (< 600 ng/L). The addition of 50 mg/L of elemental sulfur caused a 1.7-fold increment in 3MH for juice A. For juice B detectable levels of 3MH and 3MHA were only observed for the extreme addition of 50 mg/L S0, which led to a 20-fold increase in 3MH production for juice C. Even though the results showed a clear relation between S0 in juice and varietal thiols in wine, the deliberate increase in the fungicide use close to harvest needs to be carefully managed, as levels of unwanted reductive sulfur compounds including H2S, methanethiol and carbon disulfide in the final wine were found to increase with the higher elemental sulfur additions.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Leandro Dias Araujo*, Bruno Fedrizzi, Paul Kilmartin, Suzanne Callerot, Wessel du Toit

*University of Auckland

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.