Macrowine 2021
IVES 9 IVES Conference Series 9 The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

Abstract

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts. Fermentations were conducted using real must were conducted in 4L and 80L volume and only 80 mL volumes were used for the synthetic grape. Either valine, phenylalanine, leucine or isoleucine were used as the yeast amino acids nitrogen source at a rate of in addition to dibasic ammonium sulphate to make a total YAN of 300mg/L. The rate of fermentation was determined by measuring weight loss (representative of CO2 release) in time-course experiments. All experiments were fermented to dryness. The analysis of major volatiles was carried out by gas chromatography coupled with a flame ionizing detector (GC-FID). To characterise the relationship between amino acid used as sole nitrogen sources and the resultant aroma profile, multivariate analysis were conducted and one-way ANOVA was used to compare differences of individual compound accumulation between treatments. A linear correlation was found between the initial concentration of the BCAAs and their related aroma compounds in both synthetic and real grape musts for all volumes. Molar concentrations of fusel alcohols and fusel acids can be reasonably predicted from the initial molar concentration of BCAAs even when the synthetic must is supplied with a more complex amino acid mixture. Nonetheless predictability was reduced complex cocktail of amino acids was used as nitrogen source. Real must fermentation confirmed the association between amino and aroma composition and manipulation of must amino acid composition can be a valuable tool for wine-makers and other food processors.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Hannibal Musarurwa*, Florian Bauer

*IWBT-Stellenbosch University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Capture depletion of grapevine DNA: an approach to advance the study of microbial community in wine

The use of next-generation sequencing (NGS) has helped understand microbial genetics in oenology. Current studies mainly focus on barcoded amplicon NGS but not shotgun sequencing, which is useful for functional analyses. Since the high percentage of grapevine DNA conceals the microbial DNA in must, the majority of sequencing data is wasted in bioinformatic analyses. Here we present capture depletion of grapevine whole genome DNA.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).