Macrowine 2021
IVES 9 IVES Conference Series 9 The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

Abstract

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts. Fermentations were conducted using real must were conducted in 4L and 80L volume and only 80 mL volumes were used for the synthetic grape. Either valine, phenylalanine, leucine or isoleucine were used as the yeast amino acids nitrogen source at a rate of in addition to dibasic ammonium sulphate to make a total YAN of 300mg/L. The rate of fermentation was determined by measuring weight loss (representative of CO2 release) in time-course experiments. All experiments were fermented to dryness. The analysis of major volatiles was carried out by gas chromatography coupled with a flame ionizing detector (GC-FID). To characterise the relationship between amino acid used as sole nitrogen sources and the resultant aroma profile, multivariate analysis were conducted and one-way ANOVA was used to compare differences of individual compound accumulation between treatments. A linear correlation was found between the initial concentration of the BCAAs and their related aroma compounds in both synthetic and real grape musts for all volumes. Molar concentrations of fusel alcohols and fusel acids can be reasonably predicted from the initial molar concentration of BCAAs even when the synthetic must is supplied with a more complex amino acid mixture. Nonetheless predictability was reduced complex cocktail of amino acids was used as nitrogen source. Real must fermentation confirmed the association between amino and aroma composition and manipulation of must amino acid composition can be a valuable tool for wine-makers and other food processors.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Hannibal Musarurwa*, Florian Bauer

*IWBT-Stellenbosch University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.