Macrowine 2021
IVES 9 IVES Conference Series 9 Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

Abstract

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine. The aim of this study was to compare the protein composition of B. cinerea infected and healthy grapes as well as of wines produced from such grapes in regard to proteins which might play a potential role in the gushing phenomenon of sparkling wine. Therefore, SDS-PAGE and reversed phase HPLC (RP-HPLC) were applied to analyze the protein composition of healthy and botrytized Weißburgunder grapes and the corresponding wines. The fungal infection led to a general decrease of the protein content in infected grapes and wines suggesting a proteolytic activity of B. cinerea. Especially the concentration of a protein with a molecular mass of ~17 kDa underwent a significant reduction in wine from infected grapes as compared to wine made from healthy grapes. Amino acid sequence analysis showed that this protein derives from Vitis vinifera. Other proteins were detected via SDS-PAGE and were shown to occur in the botrytized but not in healthy wines. These unidentified proteins were assumed to be related to the fungal infection, either as induced plant proteins or as proteins produced by the pathogen. Similar results were found when the proteome of non-gushing and gushing sparkling wines were compared. The protein content in gushing sparkling wines was much lower as compared to non-gushing sparkling wines when analyzed by SDS-PAGE and RP-HPLC. Furthermore, in gushing sparkling wine proteins of fungal origin can be found, whereas plant-associated pathogenesis related proteins were enriched in the non-gushing samples. The before mentioned protein (MW: ~17 kDa) was absent or at least reduced in gushing sparkling wine samples. Hence, an infection with B. cinerea led to several proteomic changes in grapes, which were still detectable in the wine made thereof. Degradation of plant proteins and occurrence of fungal proteins were also observed in gushing sparkling wines. These parallels suggest that gushing in sparkling wine might be affected by a degradation of proteins induced by an infection with fungal pathogens.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ludwig Niessen*, Elisabeth Vogt, Rudi Vogel, Tobias Ziegler, Veronika Kupfer

*TU München

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.