Macrowine 2021
IVES 9 IVES Conference Series 9 Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

Abstract

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine. The aim of this study was to compare the protein composition of B. cinerea infected and healthy grapes as well as of wines produced from such grapes in regard to proteins which might play a potential role in the gushing phenomenon of sparkling wine. Therefore, SDS-PAGE and reversed phase HPLC (RP-HPLC) were applied to analyze the protein composition of healthy and botrytized Weißburgunder grapes and the corresponding wines. The fungal infection led to a general decrease of the protein content in infected grapes and wines suggesting a proteolytic activity of B. cinerea. Especially the concentration of a protein with a molecular mass of ~17 kDa underwent a significant reduction in wine from infected grapes as compared to wine made from healthy grapes. Amino acid sequence analysis showed that this protein derives from Vitis vinifera. Other proteins were detected via SDS-PAGE and were shown to occur in the botrytized but not in healthy wines. These unidentified proteins were assumed to be related to the fungal infection, either as induced plant proteins or as proteins produced by the pathogen. Similar results were found when the proteome of non-gushing and gushing sparkling wines were compared. The protein content in gushing sparkling wines was much lower as compared to non-gushing sparkling wines when analyzed by SDS-PAGE and RP-HPLC. Furthermore, in gushing sparkling wine proteins of fungal origin can be found, whereas plant-associated pathogenesis related proteins were enriched in the non-gushing samples. The before mentioned protein (MW: ~17 kDa) was absent or at least reduced in gushing sparkling wine samples. Hence, an infection with B. cinerea led to several proteomic changes in grapes, which were still detectable in the wine made thereof. Degradation of plant proteins and occurrence of fungal proteins were also observed in gushing sparkling wines. These parallels suggest that gushing in sparkling wine might be affected by a degradation of proteins induced by an infection with fungal pathogens.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ludwig Niessen*, Elisabeth Vogt, Rudi Vogel, Tobias Ziegler, Veronika Kupfer

*TU München

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.