Macrowine 2021
IVES 9 IVES Conference Series 9 Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

Abstract

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine. The aim of this study was to compare the protein composition of B. cinerea infected and healthy grapes as well as of wines produced from such grapes in regard to proteins which might play a potential role in the gushing phenomenon of sparkling wine. Therefore, SDS-PAGE and reversed phase HPLC (RP-HPLC) were applied to analyze the protein composition of healthy and botrytized Weißburgunder grapes and the corresponding wines. The fungal infection led to a general decrease of the protein content in infected grapes and wines suggesting a proteolytic activity of B. cinerea. Especially the concentration of a protein with a molecular mass of ~17 kDa underwent a significant reduction in wine from infected grapes as compared to wine made from healthy grapes. Amino acid sequence analysis showed that this protein derives from Vitis vinifera. Other proteins were detected via SDS-PAGE and were shown to occur in the botrytized but not in healthy wines. These unidentified proteins were assumed to be related to the fungal infection, either as induced plant proteins or as proteins produced by the pathogen. Similar results were found when the proteome of non-gushing and gushing sparkling wines were compared. The protein content in gushing sparkling wines was much lower as compared to non-gushing sparkling wines when analyzed by SDS-PAGE and RP-HPLC. Furthermore, in gushing sparkling wine proteins of fungal origin can be found, whereas plant-associated pathogenesis related proteins were enriched in the non-gushing samples. The before mentioned protein (MW: ~17 kDa) was absent or at least reduced in gushing sparkling wine samples. Hence, an infection with B. cinerea led to several proteomic changes in grapes, which were still detectable in the wine made thereof. Degradation of plant proteins and occurrence of fungal proteins were also observed in gushing sparkling wines. These parallels suggest that gushing in sparkling wine might be affected by a degradation of proteins induced by an infection with fungal pathogens.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ludwig Niessen*, Elisabeth Vogt, Rudi Vogel, Tobias Ziegler, Veronika Kupfer

*TU München

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.