Macrowine 2021
IVES 9 IVES Conference Series 9 Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

Abstract

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine. The aim of this study was to compare the protein composition of B. cinerea infected and healthy grapes as well as of wines produced from such grapes in regard to proteins which might play a potential role in the gushing phenomenon of sparkling wine. Therefore, SDS-PAGE and reversed phase HPLC (RP-HPLC) were applied to analyze the protein composition of healthy and botrytized Weißburgunder grapes and the corresponding wines. The fungal infection led to a general decrease of the protein content in infected grapes and wines suggesting a proteolytic activity of B. cinerea. Especially the concentration of a protein with a molecular mass of ~17 kDa underwent a significant reduction in wine from infected grapes as compared to wine made from healthy grapes. Amino acid sequence analysis showed that this protein derives from Vitis vinifera. Other proteins were detected via SDS-PAGE and were shown to occur in the botrytized but not in healthy wines. These unidentified proteins were assumed to be related to the fungal infection, either as induced plant proteins or as proteins produced by the pathogen. Similar results were found when the proteome of non-gushing and gushing sparkling wines were compared. The protein content in gushing sparkling wines was much lower as compared to non-gushing sparkling wines when analyzed by SDS-PAGE and RP-HPLC. Furthermore, in gushing sparkling wine proteins of fungal origin can be found, whereas plant-associated pathogenesis related proteins were enriched in the non-gushing samples. The before mentioned protein (MW: ~17 kDa) was absent or at least reduced in gushing sparkling wine samples. Hence, an infection with B. cinerea led to several proteomic changes in grapes, which were still detectable in the wine made thereof. Degradation of plant proteins and occurrence of fungal proteins were also observed in gushing sparkling wines. These parallels suggest that gushing in sparkling wine might be affected by a degradation of proteins induced by an infection with fungal pathogens.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ludwig Niessen*, Elisabeth Vogt, Rudi Vogel, Tobias Ziegler, Veronika Kupfer

*TU München

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Ellagitannin, anthocyanin and woody volatile composition of Cabernet Sauvignon wines aged in oak barrels for 12 months was evaluated. Depending on the container where malolactic fermentation (MLF) was carried out, two wine modalities were investigated: wines with MLF carried out in stainless steel tanks and barrel-fermented wines. Three toasting methods (medium toast, MT; medium toast with watering, MTAA; noisette) were considered for ageing of each wine modality. Sensory analyses (triangle and rating tests) were also performed. Two-way ANOVA of the raw experimental data revealed that the toasting method and the container where MLF took place, as well as the interaction between both factors, have a significant influence (p < 0.05) on ellagitannin, anthocyanin and woody volatile profiles of Cabernet Sauvignon wines.