Macrowine 2021
IVES 9 IVES Conference Series 9 Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

Abstract

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine. The aim of this study was to compare the protein composition of B. cinerea infected and healthy grapes as well as of wines produced from such grapes in regard to proteins which might play a potential role in the gushing phenomenon of sparkling wine. Therefore, SDS-PAGE and reversed phase HPLC (RP-HPLC) were applied to analyze the protein composition of healthy and botrytized Weißburgunder grapes and the corresponding wines. The fungal infection led to a general decrease of the protein content in infected grapes and wines suggesting a proteolytic activity of B. cinerea. Especially the concentration of a protein with a molecular mass of ~17 kDa underwent a significant reduction in wine from infected grapes as compared to wine made from healthy grapes. Amino acid sequence analysis showed that this protein derives from Vitis vinifera. Other proteins were detected via SDS-PAGE and were shown to occur in the botrytized but not in healthy wines. These unidentified proteins were assumed to be related to the fungal infection, either as induced plant proteins or as proteins produced by the pathogen. Similar results were found when the proteome of non-gushing and gushing sparkling wines were compared. The protein content in gushing sparkling wines was much lower as compared to non-gushing sparkling wines when analyzed by SDS-PAGE and RP-HPLC. Furthermore, in gushing sparkling wine proteins of fungal origin can be found, whereas plant-associated pathogenesis related proteins were enriched in the non-gushing samples. The before mentioned protein (MW: ~17 kDa) was absent or at least reduced in gushing sparkling wine samples. Hence, an infection with B. cinerea led to several proteomic changes in grapes, which were still detectable in the wine made thereof. Degradation of plant proteins and occurrence of fungal proteins were also observed in gushing sparkling wines. These parallels suggest that gushing in sparkling wine might be affected by a degradation of proteins induced by an infection with fungal pathogens.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ludwig Niessen*, Elisabeth Vogt, Rudi Vogel, Tobias Ziegler, Veronika Kupfer

*TU München

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.