Macrowine 2021
IVES 9 IVES Conference Series 9 Characterization of commercial enological tannins and its effect on human saliva diffusion

Characterization of commercial enological tannins and its effect on human saliva diffusion

Abstract

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals. One of the most important properties of TECs correspond to its contribution to the astringency (Zamora, 2003). Astringency, a sensation that is described as a puckering, rough, or drying mouth-feel, has been associated with interactions between some phenolic compounds (tannins) and salivary proteins (Bacon and Rhodes, 2000). A wide spectrum of enological tannins is now available on the market, classified mainly according to the enological properties. However, the tannins’ chemical nature is not always clearly defined. Furthermore, the effect of these on saliva is unknown. For that reason, the aim of this work was the chemical characterization of eleven commercial tannins sold for enological use. Likewise, we examined the effect of TECs on a physicochemical property of the salivary protein, namely, the mode of diffusion on cellulose membranes (Obreque-Slier et al., 2010). In this study, eleven enological tannins were characterized by classification into three groups according HPLC-DAD chromatography and spectroscopic analysis: enological products composed of proanthocyanidins, hydrolyzable, and the mixture of both types of tannins. Within each group, tannin composition varied greatly, mainly defined by the botanical origin of each commercial product. Similarly, when saliva was mixed with aliquots of increasing concentrations of TECs, we observed a progressive decrease in the blue-stained background of the distribution area of the salivary protein. The intensity of this restriction was in close relationship with the type of TECs. Finally, it was observed that certain TECs do not showed a effect on saliva diffusion on cellulose membranes.

References 1.- Bacon J., Rhodes M. 2000. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it. J Agric Food Chem 48, 838-843. 2.- Obreque-Slier E., Peña-Neira A., López-Solís R., Ramírez-Escudero C., Zamora-Marín F. 2009. Phenolic characterization of commercial enological tannins. Eur Food Res Technol 229, 859-866. 3.- Obreque-Slier E., Peña-Neira A., López-Solís, R. 2010. Quantitative determination of interactions between a tannin and a model protein using diffusion and precipitation assays on cellulose membranes. J Agric Food Chem 58, 8375-8379. 4.- Zamora, F. 2003. Elaboración y crianza del vino tinto: Aspectos científicos y prácticos. Madrid, España. Ediciones Mundi Prensa. 225p. Acknowledgments This study was supported by grant Fondecyt-Chile 1150240.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Elías Obreque Slier*, Álvaro Peña-Neira, Dante Munoz, Gina Vazallo, Marcela Medel, Remigio López

*Universidad de Chile

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.