Macrowine 2021
IVES 9 IVES Conference Series 9 Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

Abstract

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries. Grape dehydration is an oenological process used in the production of a number of non-botrytized sweet and not-sweet Italian wines: e.g., Amarone di Valpolicella (produced by Corvina, Corvinone and Rondinella grapes), Passito di Pantelleria (Zibibbo grape), VinSanto (Malvasia and Trebbiano grapes), Sfursat (Nebbiolo grape), Raboso Passito. The process is carried out by keeping grape on-vine for a certain period of time after cutting the yield cane (up to two/three months), or by leaving the grape in dehydration warehouses under controlled conditions of humidity and temperature [2-6]. Metabolomics of polyphenols of Corvina grape dehydrated both in-plant and warehouse withering was studied by performing UHPLC-QTOF analysis of grape extracts. In particular, the study was focalized on the principal classes of polyphenolic compounds of grape, such as anthocyanins, flavonols and stilbene derivatives [7,8]. Differences between the two dehydration methods were evaluated by statistical analysis.

References 1.Flamini, R.; De Rosso, M.; et al. Metabolomics, 9 (2013), pp 1243-1253. 2.Bellincontro, A.; De Santis, D.; et al. Journal of the Science of Food and Agriculture, 84 (2004), pp 1791-1800. 3.Giordano, M.; Rolle, L.; et al. Journal International des Sciences de la Vigne et du Vin, 43 (2009), pp 159-170. 4.Zamboni, A.; Minoia, L.; et al. Journal of Experimental Botany, 59 (2008), pp 4145-4159. 5.Corso, M.; Ziliotto, F.; et al. Plant Science, 208 (2013), pp 50-57. 6.Nicoletti, I.; Bellincontro, A.; et al. Australian Journal of Grape and Wine Research 19 (2013), pp 358-368. 7.De Rosso, M.; Tonidandel, L.; et al. Food Chemistry, 1635 (2014), pp 244-251. 8. Flamini, R.; De Rosso, et al. J. Anal. Meth. in Chem. (2015), 10 pp.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Riccardo Flamini*, Antonio Dalla Vedova, Diego Tomasi, Luca Brillante, Mirko De Rosso

*CREA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.