Macrowine 2021
IVES 9 IVES Conference Series 9 Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

Abstract

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries. Grape dehydration is an oenological process used in the production of a number of non-botrytized sweet and not-sweet Italian wines: e.g., Amarone di Valpolicella (produced by Corvina, Corvinone and Rondinella grapes), Passito di Pantelleria (Zibibbo grape), VinSanto (Malvasia and Trebbiano grapes), Sfursat (Nebbiolo grape), Raboso Passito. The process is carried out by keeping grape on-vine for a certain period of time after cutting the yield cane (up to two/three months), or by leaving the grape in dehydration warehouses under controlled conditions of humidity and temperature [2-6]. Metabolomics of polyphenols of Corvina grape dehydrated both in-plant and warehouse withering was studied by performing UHPLC-QTOF analysis of grape extracts. In particular, the study was focalized on the principal classes of polyphenolic compounds of grape, such as anthocyanins, flavonols and stilbene derivatives [7,8]. Differences between the two dehydration methods were evaluated by statistical analysis.

References 1.Flamini, R.; De Rosso, M.; et al. Metabolomics, 9 (2013), pp 1243-1253. 2.Bellincontro, A.; De Santis, D.; et al. Journal of the Science of Food and Agriculture, 84 (2004), pp 1791-1800. 3.Giordano, M.; Rolle, L.; et al. Journal International des Sciences de la Vigne et du Vin, 43 (2009), pp 159-170. 4.Zamboni, A.; Minoia, L.; et al. Journal of Experimental Botany, 59 (2008), pp 4145-4159. 5.Corso, M.; Ziliotto, F.; et al. Plant Science, 208 (2013), pp 50-57. 6.Nicoletti, I.; Bellincontro, A.; et al. Australian Journal of Grape and Wine Research 19 (2013), pp 358-368. 7.De Rosso, M.; Tonidandel, L.; et al. Food Chemistry, 1635 (2014), pp 244-251. 8. Flamini, R.; De Rosso, et al. J. Anal. Meth. in Chem. (2015), 10 pp.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Riccardo Flamini*, Antonio Dalla Vedova, Diego Tomasi, Luca Brillante, Mirko De Rosso

*CREA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.