Macrowine 2021
IVES 9 IVES Conference Series 9 Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

Abstract

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries. Grape dehydration is an oenological process used in the production of a number of non-botrytized sweet and not-sweet Italian wines: e.g., Amarone di Valpolicella (produced by Corvina, Corvinone and Rondinella grapes), Passito di Pantelleria (Zibibbo grape), VinSanto (Malvasia and Trebbiano grapes), Sfursat (Nebbiolo grape), Raboso Passito. The process is carried out by keeping grape on-vine for a certain period of time after cutting the yield cane (up to two/three months), or by leaving the grape in dehydration warehouses under controlled conditions of humidity and temperature [2-6]. Metabolomics of polyphenols of Corvina grape dehydrated both in-plant and warehouse withering was studied by performing UHPLC-QTOF analysis of grape extracts. In particular, the study was focalized on the principal classes of polyphenolic compounds of grape, such as anthocyanins, flavonols and stilbene derivatives [7,8]. Differences between the two dehydration methods were evaluated by statistical analysis.

References 1.Flamini, R.; De Rosso, M.; et al. Metabolomics, 9 (2013), pp 1243-1253. 2.Bellincontro, A.; De Santis, D.; et al. Journal of the Science of Food and Agriculture, 84 (2004), pp 1791-1800. 3.Giordano, M.; Rolle, L.; et al. Journal International des Sciences de la Vigne et du Vin, 43 (2009), pp 159-170. 4.Zamboni, A.; Minoia, L.; et al. Journal of Experimental Botany, 59 (2008), pp 4145-4159. 5.Corso, M.; Ziliotto, F.; et al. Plant Science, 208 (2013), pp 50-57. 6.Nicoletti, I.; Bellincontro, A.; et al. Australian Journal of Grape and Wine Research 19 (2013), pp 358-368. 7.De Rosso, M.; Tonidandel, L.; et al. Food Chemistry, 1635 (2014), pp 244-251. 8. Flamini, R.; De Rosso, et al. J. Anal. Meth. in Chem. (2015), 10 pp.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Riccardo Flamini*, Antonio Dalla Vedova, Diego Tomasi, Luca Brillante, Mirko De Rosso

*CREA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.