Macrowine 2021
IVES 9 IVES Conference Series 9 Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

Abstract

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries. Grape dehydration is an oenological process used in the production of a number of non-botrytized sweet and not-sweet Italian wines: e.g., Amarone di Valpolicella (produced by Corvina, Corvinone and Rondinella grapes), Passito di Pantelleria (Zibibbo grape), VinSanto (Malvasia and Trebbiano grapes), Sfursat (Nebbiolo grape), Raboso Passito. The process is carried out by keeping grape on-vine for a certain period of time after cutting the yield cane (up to two/three months), or by leaving the grape in dehydration warehouses under controlled conditions of humidity and temperature [2-6]. Metabolomics of polyphenols of Corvina grape dehydrated both in-plant and warehouse withering was studied by performing UHPLC-QTOF analysis of grape extracts. In particular, the study was focalized on the principal classes of polyphenolic compounds of grape, such as anthocyanins, flavonols and stilbene derivatives [7,8]. Differences between the two dehydration methods were evaluated by statistical analysis.

References 1.Flamini, R.; De Rosso, M.; et al. Metabolomics, 9 (2013), pp 1243-1253. 2.Bellincontro, A.; De Santis, D.; et al. Journal of the Science of Food and Agriculture, 84 (2004), pp 1791-1800. 3.Giordano, M.; Rolle, L.; et al. Journal International des Sciences de la Vigne et du Vin, 43 (2009), pp 159-170. 4.Zamboni, A.; Minoia, L.; et al. Journal of Experimental Botany, 59 (2008), pp 4145-4159. 5.Corso, M.; Ziliotto, F.; et al. Plant Science, 208 (2013), pp 50-57. 6.Nicoletti, I.; Bellincontro, A.; et al. Australian Journal of Grape and Wine Research 19 (2013), pp 358-368. 7.De Rosso, M.; Tonidandel, L.; et al. Food Chemistry, 1635 (2014), pp 244-251. 8. Flamini, R.; De Rosso, et al. J. Anal. Meth. in Chem. (2015), 10 pp.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Riccardo Flamini*, Antonio Dalla Vedova, Diego Tomasi, Luca Brillante, Mirko De Rosso

*CREA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.