Macrowine 2021
IVES 9 IVES Conference Series 9 Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

Abstract

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries. Grape dehydration is an oenological process used in the production of a number of non-botrytized sweet and not-sweet Italian wines: e.g., Amarone di Valpolicella (produced by Corvina, Corvinone and Rondinella grapes), Passito di Pantelleria (Zibibbo grape), VinSanto (Malvasia and Trebbiano grapes), Sfursat (Nebbiolo grape), Raboso Passito. The process is carried out by keeping grape on-vine for a certain period of time after cutting the yield cane (up to two/three months), or by leaving the grape in dehydration warehouses under controlled conditions of humidity and temperature [2-6]. Metabolomics of polyphenols of Corvina grape dehydrated both in-plant and warehouse withering was studied by performing UHPLC-QTOF analysis of grape extracts. In particular, the study was focalized on the principal classes of polyphenolic compounds of grape, such as anthocyanins, flavonols and stilbene derivatives [7,8]. Differences between the two dehydration methods were evaluated by statistical analysis.

References 1.Flamini, R.; De Rosso, M.; et al. Metabolomics, 9 (2013), pp 1243-1253. 2.Bellincontro, A.; De Santis, D.; et al. Journal of the Science of Food and Agriculture, 84 (2004), pp 1791-1800. 3.Giordano, M.; Rolle, L.; et al. Journal International des Sciences de la Vigne et du Vin, 43 (2009), pp 159-170. 4.Zamboni, A.; Minoia, L.; et al. Journal of Experimental Botany, 59 (2008), pp 4145-4159. 5.Corso, M.; Ziliotto, F.; et al. Plant Science, 208 (2013), pp 50-57. 6.Nicoletti, I.; Bellincontro, A.; et al. Australian Journal of Grape and Wine Research 19 (2013), pp 358-368. 7.De Rosso, M.; Tonidandel, L.; et al. Food Chemistry, 1635 (2014), pp 244-251. 8. Flamini, R.; De Rosso, et al. J. Anal. Meth. in Chem. (2015), 10 pp.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Riccardo Flamini*, Antonio Dalla Vedova, Diego Tomasi, Luca Brillante, Mirko De Rosso

*CREA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.