Macrowine 2021
IVES 9 IVES Conference Series 9 Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Abstract

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds. In theory, the tannin/anthocyanin ratio could affect the development of the phenolic profile of the wine. Oxygen also plays an essential part in wine’s colour and phenolic stabilization. The main aim of the study is to evaluate the colour and phenolic evolution over time of three different tannin/anthocyanin ratios in a model wine system as well as the impact that oxygen has on this. The three different tannin/anthocyanin ratios were selected according to a different volume of seeds: skins (Sk) with no seeds added, skins + seeds (SkS) and skins + 4 times seeds (Sk4S). The extractions took place in model wine solution. The three treatments were separated into two oxygen treatments and stored hermetically closed vials. Preliminary results show, as expected, a similar amount of anthocyanin in all the treatments and higher tannin concentration in the 4 time seeds treatment. Oxygen consumption also seemed to differ between the ratios. The colour and phenolic evolution will be reported at different sampling stages over time.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Gonzalo Garrido Bañuelos*, André De Villiers, Astrid Buica, Wessel du Toit

*Stellenbosch University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.