Macrowine 2021
IVES 9 IVES Conference Series 9 Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Abstract

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds. In theory, the tannin/anthocyanin ratio could affect the development of the phenolic profile of the wine. Oxygen also plays an essential part in wine’s colour and phenolic stabilization. The main aim of the study is to evaluate the colour and phenolic evolution over time of three different tannin/anthocyanin ratios in a model wine system as well as the impact that oxygen has on this. The three different tannin/anthocyanin ratios were selected according to a different volume of seeds: skins (Sk) with no seeds added, skins + seeds (SkS) and skins + 4 times seeds (Sk4S). The extractions took place in model wine solution. The three treatments were separated into two oxygen treatments and stored hermetically closed vials. Preliminary results show, as expected, a similar amount of anthocyanin in all the treatments and higher tannin concentration in the 4 time seeds treatment. Oxygen consumption also seemed to differ between the ratios. The colour and phenolic evolution will be reported at different sampling stages over time.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Gonzalo Garrido Bañuelos*, André De Villiers, Astrid Buica, Wessel du Toit

*Stellenbosch University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Grape byproducts as source of resveratrol oligomers for the development of antifungal extracts

Grape canes are a non-recycled byproduct of wine industry (1-5 tons per hectare per year) containing valuable phytochemicals of medicine and agronomical interest. Resveratrol and wine polyphenols are known to exert a plethora of health-promoting effects including antioxidant capacity, cardioprotection, anticancer activity, anti-inflammatory effects, and estrogenic/antiestrogenic properties (Guerrero et al. 2009). Additionally, resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance (Chang et al. 2011). Our project aims to develop polyphenol-rich grape cane extracts to fight phytopathogenic or clinically relevant fungi. We initiate the project with the development of analytical methods to analyze resveratrol mono- and oligomers (dimers, trimers and tetramers) from grape canes and we evaluate their potential activity against clinically relevant opportunistic fungal pathogens (Houillé et al. 2014).

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.