Terroir 2014 banner
IVES 9 IVES Conference Series 9 Mapping natural terroir units using a multivariate approach and legacy data

Mapping natural terroir units using a multivariate approach and legacy data

Abstract

This work aimed at setting up a multivariate and geostatistical methodology to map natural terroir units of the viticultural areas at the province scale (1:125,000). 

The methodology was based upon the creation of a GIS storing all the viticultural and oenological legacy data of experimental vineyards (1989-2009), the long term climate data, the digital elevation model, the soilscapes (land systems) and the legacy data of the soil profiles. 

The environmental parameters related to viticulture, selected by an explorative PCA, were: elevation, mean annual temperature, mean soil temperature, annual precipitation, clay, sand and gravel content of soils, soil water availability, redoximorphic features and rooting depth. 

The selected variables, spatialized by means of geostatistical methods, were used for a k-means clustering aimed to map the Natural Terroir Units (NTU). The vineyard of the province of Siena was subdivided into 9 NTU. 

Both the historical DOCG (Chianti Classico, Brunello di Montalcino and Nobile di Montepulciano) and the others DOC were mainly characterized by three or four NTU, whereas the wider Chianti and Chianti Colli senesi DOCG was mainly constituted by seven NTU.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Simone Priori, Roberto Barbetti, Giovanni L’Abate, Pierluigi Bucellia, Paolo Storchib, Edoardo A.C. Costantinia 

Consiglio per la Ricerca e la Sperimentazione in Agricoltura, CRA-ABP, Research Center of Agrobiology and Pedology, Firenze, Italy. / b Consiglio per la Ricerca e la Sperimentazione in Agricoltura, CRA-VIC, Research Unit of Viticulture, Arezzo, Italy. 

Contact the author

Keywords

GIS, kriging, PCA, clustering, soils, Sangiovese, wine, Tuscany, Italy

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

The pedoclimatic conditions impact the yeast assimilable nitrogen concentration in the grapevine must and the valorisation of foliarnitrogen fertilisation

Aims: Agroscope investigated the efficiency of nitrogen fertilisation via foliar urea application at veraison with the aim of raising the yeast assimilable nitrogen (YAN) concentration in the musts

Assessment of environmental sustainability of wine growing activity in France

To meet the demand of assessment tool of vine growers and their advisers we adapted to the vine production the INDIGO® method to developed initially for arable farming.

Il vino nobile di Montepulciano

C’è grande attenzione al rapporto tra zonazione e marketing. Mi sembra però che ci sia anco­ra oggi un salto fra le pratiche di analisi del terreno e di deterrninazione di quello che potremo definire “cru” e quello che può essere la sua utilizzazione rispetto ai consumatori finali.

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.