Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Abstract

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles (references) are used for the evaluation of similarities and dissimilarities between samples. Panelists are presented with “free-moving” products to arrange around the poles, according to similarities and dissimilarities, to create a 2D product map. Additionally, the judges give a description of the samples, generating a short list of attributes. Our approach to testing this method was to first establish the poles using PM, then test the model using PPM with samples that were either known (used in the PM session and that contributed to the choice of poles) or unknown. The sample set consisted of 18 commercial Chenin blanc wines, vintages 2013 and 2014, from the three representative styles, chosen according to the tasting notes description. Four PPM experiments were performed. The poles were kept constant among the PPM experiments, while different combinations of “free-moving” wines were evaluated to test the consistency of product groupings. In all tasks sensory descriptors were generated. For each session 15 judges were recruited. Each judge repeated the exercise after a 15 minute break. For PM the sample set consisted of 12 samples (9 wines, 3 of them duplicates). For PPM, the sample sets also had 12 samples, with one of the poles and one other sample duplicated. The PPM sessions were organized as follows: PPM1 same samples as PM, PPM2 and PPM3 half known and half unknown samples, and PPM4 only unknown samples. The data generated was evaluated statistically by means of multiple factor analysis (MFA). Multiple factor analysis (MFA) on the individual tasks showed in the PM and all four PPM tasks, the RRW group separated most clearly from other wines and blind duplicates of this style grouped well together. The FF and RRU styles grouped less consistently from one task to another and blind duplicates were not grouped as closely to one another. MFA results comparing all four PPM experiments showed good repeatability in grouping of wines among the separate sessions, especially for wooded wines. New rapid methods provide significant cost benefits for the wine industry and researchers. PPM may be a useful tool for researchers to apply in the analysis of large sample sets of wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Astrid Buica*, Christine Wilson, Jeanne Brand

*Stellenbosch University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.