Macrowine 2021
IVES 9 IVES Conference Series 9 Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

Abstract

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many publications on this subject are nowadays available in the literature most of them only reported feasibility studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150 wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis. Anthocyanins, total phenolics, tannins, colour density and the most representative compounds within the main phenolic families (hydroxicinnamic acids, flavan-3-ols, flavonols and anthocyanins) were quantified. Spectra were recorded in different regions of the electromagnetic spectrum. Particularly the information contained in the ultraviolet-visible region as well as in the near and mid-infrared regions was collected. Regression models were built and validated. The interpretation of the loadings and coefficients of regression, the evaluation and analysis of the correlation among variables and the measured phenolic compounds as well as the chemistry basis behind each quantified compound was extensively investigated and reported. Spectral pre-processing techniques as well as variable selection tools were also investigated and selected based on model performance. Accurate models for most of the phenolic compounds and spectroscopies were obtained with residual predictive deviation (RPD) values higher than 2.5. The results obtained showed UV-visible and infrared spectroscopy as valid approaches for the quantification of the phenolic content throughout the winemaking process. Considerations such as easiness of use and the economical and human resources involved in the analysis will also be discussed.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Jose Luis Aleixandre-Tudo*, Helene Nieuwoudt, Wessel du Toit

*Stellenbosch University

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

One of the key factors of the economical development of viticulture and wine industry in specific limited areas is the exploitation of ancient, local grape varieties. Therefore, in recent years the growing interest to rediscover minor varieties, previously cultivated, has promoted many studies. With this regard, the focus of this study was the Vitis vinifera L. cultivar Moscato nero d’Acqui, nowadays found only in old vineyards in the Acqui zone (North-West Italy). In particular, the aims of this work were: i) to investigate secondary metabolites profile of the grapes, and ii) to evaluate the attitude to the production of special wines.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.