Macrowine 2021
IVES 9 IVES Conference Series 9 Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

Abstract

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure. Therefore, the binding of ethyl esters to a wine protein has been analyzed by studying the modifications of the protein structure (which indicates protein-ligand interactions) by Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy (2). The effects induced by the addition of ethyl esters (from hexanoate to dodecanoate) on the secondary structure and stability of a purified Thaumatin like-protein (VVTL1), the most abundant wine protein, was studied in a wine model solution (12% ethanol, 5 g/l mesotartaric acid, pH 3.2). As demonstrated by UV-photo denaturation assays (20 repeated consecutive scans in the far UV-region of protein), the secondary structure of VVTL1 was only slightly affected by the presence of the selected aroma esters, but protein stability was increased by the addiction of octanoate, decanoate and dodecanoate ethyl esters. On the contrary, in the presence of ethyl hexanoate protein stability decreases. These data were further confirmed by SRCD thermal denaturation assay. The results here reported demonstrate that the content of ordered structure and the protein photo and thermal stability of the main wine protein VVTL1 is modified by ethyl esters of different chain length, indicating the existence of a binding phenomenon. Therefore esters interactions with proteins may occur in wine and that this fact can modulate both the effect of bentonite treatments and the perception of the wine aroma.

(1) Vincenzi et al., 2015. J. Agric. Food Chem., 63, 2314 (2) Hussain R. et al., 2012. Spectroscopic Analysis: Synchrotron Radiation Circular Dichroism, in: Comprehensive Chirality, 8, Elsevier, Amsterdam, pp. 438-448.

ACKNOWLEDGMENTS We thank Diamond Light Source for access to beamline B23 (SM8034) that contributed to the results presented here. This research has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 226716.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Andrea Curioni*, Diana Gazzola, Mattia Di Gaspero, Paolo Ruzza, Simone Vincenzi

*Università di Padova

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.