Macrowine 2021
IVES 9 IVES Conference Series 9 Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

Abstract

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure. Therefore, the binding of ethyl esters to a wine protein has been analyzed by studying the modifications of the protein structure (which indicates protein-ligand interactions) by Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy (2). The effects induced by the addition of ethyl esters (from hexanoate to dodecanoate) on the secondary structure and stability of a purified Thaumatin like-protein (VVTL1), the most abundant wine protein, was studied in a wine model solution (12% ethanol, 5 g/l mesotartaric acid, pH 3.2). As demonstrated by UV-photo denaturation assays (20 repeated consecutive scans in the far UV-region of protein), the secondary structure of VVTL1 was only slightly affected by the presence of the selected aroma esters, but protein stability was increased by the addiction of octanoate, decanoate and dodecanoate ethyl esters. On the contrary, in the presence of ethyl hexanoate protein stability decreases. These data were further confirmed by SRCD thermal denaturation assay. The results here reported demonstrate that the content of ordered structure and the protein photo and thermal stability of the main wine protein VVTL1 is modified by ethyl esters of different chain length, indicating the existence of a binding phenomenon. Therefore esters interactions with proteins may occur in wine and that this fact can modulate both the effect of bentonite treatments and the perception of the wine aroma.

(1) Vincenzi et al., 2015. J. Agric. Food Chem., 63, 2314 (2) Hussain R. et al., 2012. Spectroscopic Analysis: Synchrotron Radiation Circular Dichroism, in: Comprehensive Chirality, 8, Elsevier, Amsterdam, pp. 438-448.

ACKNOWLEDGMENTS We thank Diamond Light Source for access to beamline B23 (SM8034) that contributed to the results presented here. This research has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 226716.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Andrea Curioni*, Diana Gazzola, Mattia Di Gaspero, Paolo Ruzza, Simone Vincenzi

*Università di Padova

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.