Macrowine 2021
IVES 9 IVES Conference Series 9 Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

Abstract

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure. Therefore, the binding of ethyl esters to a wine protein has been analyzed by studying the modifications of the protein structure (which indicates protein-ligand interactions) by Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy (2). The effects induced by the addition of ethyl esters (from hexanoate to dodecanoate) on the secondary structure and stability of a purified Thaumatin like-protein (VVTL1), the most abundant wine protein, was studied in a wine model solution (12% ethanol, 5 g/l mesotartaric acid, pH 3.2). As demonstrated by UV-photo denaturation assays (20 repeated consecutive scans in the far UV-region of protein), the secondary structure of VVTL1 was only slightly affected by the presence of the selected aroma esters, but protein stability was increased by the addiction of octanoate, decanoate and dodecanoate ethyl esters. On the contrary, in the presence of ethyl hexanoate protein stability decreases. These data were further confirmed by SRCD thermal denaturation assay. The results here reported demonstrate that the content of ordered structure and the protein photo and thermal stability of the main wine protein VVTL1 is modified by ethyl esters of different chain length, indicating the existence of a binding phenomenon. Therefore esters interactions with proteins may occur in wine and that this fact can modulate both the effect of bentonite treatments and the perception of the wine aroma.

(1) Vincenzi et al., 2015. J. Agric. Food Chem., 63, 2314 (2) Hussain R. et al., 2012. Spectroscopic Analysis: Synchrotron Radiation Circular Dichroism, in: Comprehensive Chirality, 8, Elsevier, Amsterdam, pp. 438-448.

ACKNOWLEDGMENTS We thank Diamond Light Source for access to beamline B23 (SM8034) that contributed to the results presented here. This research has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 226716.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Andrea Curioni*, Diana Gazzola, Mattia Di Gaspero, Paolo Ruzza, Simone Vincenzi

*Università di Padova

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.