Macrowine 2021
IVES 9 IVES Conference Series 9 Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

Abstract

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure. Therefore, the binding of ethyl esters to a wine protein has been analyzed by studying the modifications of the protein structure (which indicates protein-ligand interactions) by Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy (2). The effects induced by the addition of ethyl esters (from hexanoate to dodecanoate) on the secondary structure and stability of a purified Thaumatin like-protein (VVTL1), the most abundant wine protein, was studied in a wine model solution (12% ethanol, 5 g/l mesotartaric acid, pH 3.2). As demonstrated by UV-photo denaturation assays (20 repeated consecutive scans in the far UV-region of protein), the secondary structure of VVTL1 was only slightly affected by the presence of the selected aroma esters, but protein stability was increased by the addiction of octanoate, decanoate and dodecanoate ethyl esters. On the contrary, in the presence of ethyl hexanoate protein stability decreases. These data were further confirmed by SRCD thermal denaturation assay. The results here reported demonstrate that the content of ordered structure and the protein photo and thermal stability of the main wine protein VVTL1 is modified by ethyl esters of different chain length, indicating the existence of a binding phenomenon. Therefore esters interactions with proteins may occur in wine and that this fact can modulate both the effect of bentonite treatments and the perception of the wine aroma.

(1) Vincenzi et al., 2015. J. Agric. Food Chem., 63, 2314 (2) Hussain R. et al., 2012. Spectroscopic Analysis: Synchrotron Radiation Circular Dichroism, in: Comprehensive Chirality, 8, Elsevier, Amsterdam, pp. 438-448.

ACKNOWLEDGMENTS We thank Diamond Light Source for access to beamline B23 (SM8034) that contributed to the results presented here. This research has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 226716.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Andrea Curioni*, Diana Gazzola, Mattia Di Gaspero, Paolo Ruzza, Simone Vincenzi

*Università di Padova

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.