Macrowine 2021
IVES 9 IVES Conference Series 9 Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

Abstract

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching. In this study, we measured the chemical age (i and ii) of wines made of two different native Cretan varieties over a two year period during which they matured in different types of barrels. The grape varieties used, Kotsifali and Mandilari, differ greatly on their anthocyanin profiles. All wines’ mid-IR spectra were also collected with the use of a Fourier Transform Infrared Spectrophotometer in ZnSe disk mode. The determination models were developed for the chemical age indexes using Partial Least Squares (TQ Analyst software) considering the spectral region 1830-1500 cm-1. The correlation coefficients (R2) for chemical age (i) were found 0.93 for Mandilari (root-mean-square error of calibration RMSEC=0.039) and 0.91 for Kotsifali (RMSEC=0.054) respectively. For chemical age (ii) the correlation coefficients (R2) were 0.95 and 0.87 for Mandilari (RMSEC 0.022) and Kotsifali (RMSEC=0.042) respectively. The results indicate there is good potential of using FT-IR for a quick, non destructive, economical and time efficient measurement of a wine’s chemical age.

This study was funded by the program Thalis, “Εvaluation and optimization of the quality factors during maturation of wines produced from Cretan red and white grape varieties. Production of high quality wines”.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Marianthi Basalekou*, Christos Pappas, Dimitris Lydakis, Petros Tarantilis, Stamatina Kallithraka, Yorgos Kotseridis

*Agricultural University of Athen

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.