Macrowine 2021
IVES 9 IVES Conference Series 9 A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Abstract

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested. Cv. Viura is suitable to elaborate white dry wines and also sparkling wines together with other varieties. Floral and fruity aromas are the ones more representative of cv. Viura, although they appear with a medium level intensity. Grape volatile composition is one of the most important parameters determining must and wine quality. Wine aroma is formed by volatile compounds of different chemical natures and origins and they vary as a function of several factors, being the variety a key factor. For it, in order to characterize the aroma profile of cv. Viura and provide to the market new certified plant material, a clonal selection with 106 clones of cv. Viura was carried out. These clones, belonging to different cultivated areas of D.O.Ca Rioja, were planted in a comparative field of clones. Agronomical and technological characteristics were evaluated during three consecutive years, selecting on the basis of these parameters 41 clones that showed low production and high values of titratable acidity. The volatile compounds of these clones were analyzed by HS-SPME-GC-MS. The results showed that C6 compounds, norisoprenoids and terpenoids were the most representative in cv. Viura, showing C-6 compounds a great variability within clones. Concerning each group, 24% of the studied clones highlighted by presenting a higher content of C6 alcohols in relation to their average content, being the most representative compounds (E)-2-hexenal, hexanal and 1-hexanol. These compounds, depending on its concentration, can have a detrimental effect on wine quality due to their grassy and herbaceous odors. Approximately the 50% of clones exhibited a higher content of norisoprenoids and terpenoids in relation to their average content. (E)-β-damascenone, β-ionone and (Z)-β-damascenone were the most abundant norisoprenoids compounds and linalool, nerol oxide and α-terpineol the most abundant terpenoids. Both, norisoprenoids and terpenoids are among the most odoriferous groups of compounds, emitting floral scents which allow characterize the varietal aroma. Sixteen clones out of forty one presented the highest content of these two positive groups of compounds, being considered the ones with the better varietal aroma profile. These results obtained can be of great interest to wine sector due to the increase of supplied certified plant material of this variety which contributes to improve its wines quality.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ana Gonzalo-Diago*, Elisa Baroja, Enrique García-Escudero, Estela Terroba-Pérez, Juana Martínez

*ICVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.