GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Monitoring of ripening and yield of vineyards in Nemea region using UAV

Monitoring of ripening and yield of vineyards in Nemea region using UAV

Abstract

Context and purpose of the study ‐ Nemea region is the largest POD zone in Greece. Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated variety in Greece with significant wine potential. Due to the extension of the area there is a great variability of soil content and climatic conditions. Seven vineyards in the POD zone were selected and monitored for ripening evolution and yield of vine plots using UAV through the extraction of vegetation indices (NDVI, NDRE, GNDVI and OSAVI). Grapes were harvested at maturity and the enological potential was estimated. Winemaking was applied in order to evaluate the potential of each sub‐zone and in order to search if any connection with the vegetation indices. The aim of this study is to research the “terroir” impact in Agiorgitiko grapes and compare the quality features in order to split the Nemea region in subzones.

Material and methods ‐ Four flights took place during the summer of 2018. The UAV platform used was the DJI Matrice 100 and was equipped with the Parrot Sequoia camera. The collected images were combined into orthosmosaics and further analysis was made by combining these mosaics and extracting vegetation indices. From each vineyard grapes were sampled to be analyzed for their physicochemical properties (sugar content, total acidity, pH, YAN, color characteristics). Furthermore, grapes from each vineyard were harvested on the technological maturity level. The same vinification protocol was applied in all samples. After the alcoholic fermentation was conducted the wines were inoculated with lactic bacteria for malolactic fermentation. Classical analysis was performed in all samples.

Results ‐ Vegetation indices (NDVI, NDRE, GNDVI and OSAVI) showed significant differences in each vineyard. Also, significant differences were observed in grapes and wines originated from different vineyards. Phenolic and anthocyanin profile indicated a greater potential in wines from vineyards in higher altitude.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Ioannis KATSIKIS (1), Dionissios KALIVAS (1), Georgios KOTSERIDIS (2), Maria Ioanna XENIA (2)

(1) AUA Department of Natural Resources Management & Agricultural Engineering, Laboratory of Soil Science and Agricultural Chemistry, G.I.S. Research Group, Athens, Greece
(2) AUA Department of Food Science & Human Nutrition, Laboratory of Oenology and Alcoholic Beverages, Athens, Greece

Contact the author

Keywords

Agiorgitiko, Remote Sensing, Ripening Monitor, Vegetation Indices, Wine Analysis

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of grapevine leafroll virus infections on vine physiology and the berry transcriptome

Grapevine leafroll associated virus (GLRaV) infections deteriorate vine physiological performance and cause high losses of yield and fruit quality

Exploring the genomic diversity of yeast involved in spontaneous fermentation. from studies to select autochthonous strains of different italian’s wineries to extensive phylogenetic survey about the italians’ population of s. cerevisiae

Modern winemakers must ensure effective alcoholic fermentation without losing the intrinsic biodiversity of the different oenological contexts. In this sense, the population of saccharomyces cerevisiae characteristic of wineries that traditionally do not use selected yeasts can represent an interesting reservoir of biodiversity.

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.

Développement du concept d’Appellation d’Origine Contrôlée et d’Indication Géographique

L’identification des produits par le nom de la ville, de la région, de la province d’origine d’un produit tend aujourd’hui à se développer partout dans le monde et notamment dans le secteur agro-alimentaire, mais aussi dans les secteurs des produits artisanaux.

Deep learning based models for grapevine phenology

the phenological evolution is a crucial aspect of grapevine growth and development. Accurate detection of phenological stages can improve vineyard management, leading to better crop yield and quality traits. However, traditional methods of phenological tracking such as on-site observations are time-consuming and labour-intensive. This work proposes a scalable data-driven method to automatically detect key phenological stages of grapevines using satellite data. Our approach applies to vast areas because it solely relies on open and satellite data having global coverage without requiring any in-field data from weather stations or other sensors making the approach extensible to other areas.