GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Monitoring of ripening and yield of vineyards in Nemea region using UAV

Monitoring of ripening and yield of vineyards in Nemea region using UAV

Abstract

Context and purpose of the study ‐ Nemea region is the largest POD zone in Greece. Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated variety in Greece with significant wine potential. Due to the extension of the area there is a great variability of soil content and climatic conditions. Seven vineyards in the POD zone were selected and monitored for ripening evolution and yield of vine plots using UAV through the extraction of vegetation indices (NDVI, NDRE, GNDVI and OSAVI). Grapes were harvested at maturity and the enological potential was estimated. Winemaking was applied in order to evaluate the potential of each sub‐zone and in order to search if any connection with the vegetation indices. The aim of this study is to research the “terroir” impact in Agiorgitiko grapes and compare the quality features in order to split the Nemea region in subzones.

Material and methods ‐ Four flights took place during the summer of 2018. The UAV platform used was the DJI Matrice 100 and was equipped with the Parrot Sequoia camera. The collected images were combined into orthosmosaics and further analysis was made by combining these mosaics and extracting vegetation indices. From each vineyard grapes were sampled to be analyzed for their physicochemical properties (sugar content, total acidity, pH, YAN, color characteristics). Furthermore, grapes from each vineyard were harvested on the technological maturity level. The same vinification protocol was applied in all samples. After the alcoholic fermentation was conducted the wines were inoculated with lactic bacteria for malolactic fermentation. Classical analysis was performed in all samples.

Results ‐ Vegetation indices (NDVI, NDRE, GNDVI and OSAVI) showed significant differences in each vineyard. Also, significant differences were observed in grapes and wines originated from different vineyards. Phenolic and anthocyanin profile indicated a greater potential in wines from vineyards in higher altitude.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Ioannis KATSIKIS (1), Dionissios KALIVAS (1), Georgios KOTSERIDIS (2), Maria Ioanna XENIA (2)

(1) AUA Department of Natural Resources Management & Agricultural Engineering, Laboratory of Soil Science and Agricultural Chemistry, G.I.S. Research Group, Athens, Greece
(2) AUA Department of Food Science & Human Nutrition, Laboratory of Oenology and Alcoholic Beverages, Athens, Greece

Contact the author

Keywords

Agiorgitiko, Remote Sensing, Ripening Monitor, Vegetation Indices, Wine Analysis

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Copper reduction strategy for sangiovese in organic viticulture

Organic viticulture requires copper based treatments for bunch protection even though an intensive employment is no longer admitted because of its low leaching and phytotoxicity in the soil. UE Reg. 1981/2018 set copper employment to 4 kg/ha for year or 28 during 7 years with an absolute level allowed of 6 Kg/ha although those limits were decreased frequently.

The South African vineyard landscapes: impact on long term cultural practices

This paper follows the one presented by Saayman at the International Symposium on Landscapes of Vines and Wines in the Loire Valley during July 2003. Where Saayman’s paper described the heritage and development of South African vineyard landscapes, this one focuses on how the landscape is used to assist in decision-making concerning the most important long term practices.

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

Defoliation timing impacts berry secondary metabolites and sunburn damage

Sunburn is a physiological disorder that leads to yield and quality losses in a range of fruits such as grapes and apples. It affects the visual appearance and the composition of the fruit, leading to irreversible changes and ultimately, cell death in extreme situations.