GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Monitoring of ripening and yield of vineyards in Nemea region using UAV

Monitoring of ripening and yield of vineyards in Nemea region using UAV

Abstract

Context and purpose of the study ‐ Nemea region is the largest POD zone in Greece. Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated variety in Greece with significant wine potential. Due to the extension of the area there is a great variability of soil content and climatic conditions. Seven vineyards in the POD zone were selected and monitored for ripening evolution and yield of vine plots using UAV through the extraction of vegetation indices (NDVI, NDRE, GNDVI and OSAVI). Grapes were harvested at maturity and the enological potential was estimated. Winemaking was applied in order to evaluate the potential of each sub‐zone and in order to search if any connection with the vegetation indices. The aim of this study is to research the “terroir” impact in Agiorgitiko grapes and compare the quality features in order to split the Nemea region in subzones.

Material and methods ‐ Four flights took place during the summer of 2018. The UAV platform used was the DJI Matrice 100 and was equipped with the Parrot Sequoia camera. The collected images were combined into orthosmosaics and further analysis was made by combining these mosaics and extracting vegetation indices. From each vineyard grapes were sampled to be analyzed for their physicochemical properties (sugar content, total acidity, pH, YAN, color characteristics). Furthermore, grapes from each vineyard were harvested on the technological maturity level. The same vinification protocol was applied in all samples. After the alcoholic fermentation was conducted the wines were inoculated with lactic bacteria for malolactic fermentation. Classical analysis was performed in all samples.

Results ‐ Vegetation indices (NDVI, NDRE, GNDVI and OSAVI) showed significant differences in each vineyard. Also, significant differences were observed in grapes and wines originated from different vineyards. Phenolic and anthocyanin profile indicated a greater potential in wines from vineyards in higher altitude.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Ioannis KATSIKIS (1), Dionissios KALIVAS (1), Georgios KOTSERIDIS (2), Maria Ioanna XENIA (2)

(1) AUA Department of Natural Resources Management & Agricultural Engineering, Laboratory of Soil Science and Agricultural Chemistry, G.I.S. Research Group, Athens, Greece
(2) AUA Department of Food Science & Human Nutrition, Laboratory of Oenology and Alcoholic Beverages, Athens, Greece

Contact the author

Keywords

Agiorgitiko, Remote Sensing, Ripening Monitor, Vegetation Indices, Wine Analysis

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

An analysis of wine geographical indications from the perspective of the theory of industrial organizations: what are the trade off?

From Porto and then through Bordeaux, Champagne and Bourgogne, wine geographical indications (gi) were the driving models for this form of protection of distinctive signs for collective use. Many studies present the benefits of recognizing a gi for a given region, the challenges of its implementation, as well as the possibilities of promoting territorial development.

Comprendre la sensibilité des cépages, une clé pour la gestion durable de l’esca

Dans le cadre de TerclimPro 2025, Pierre Gastou a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8300

Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

This work aimed to evaluate the evolution of phenolic compounds during white winemaking process up to bottling and 12 months storage, together with the influence of different antioxidant strategies

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.