Macrowine 2021
IVES 9 IVES Conference Series 9 Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

Abstract

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine. The exchangeable cations in its lamellar structures strongly influence some properties, like, for instance, the specific surface, the exchange capacity, as well as the adsorption behaviour. The interactions with haze forming proteins, other colloids, as well as aroma compounds and polyphenols would have been to discover as the modulation of wine colloids by an adjuvant severely affects the wine sensory profile. Body Oenologists do not really know on which parameters they have to focus for the choice of the bentonite targeted at gaining both the desired degree of limpidity and stability coupled with the avoiding of undesirable side effects. In this field, the authors have carried out many scientific and technical activities that led to detect: -The proteins targeted by the bentonite; -The endogenous allergenic wine compounds that are removed by bentonite; -The effect of protein origin, content, and pH toward wine colloidal (heat) stability; -The bentonite optimization for red wine fining; -The bentonite side effects on polyphenols and colour; -The interactions with the free- and glycosylated-varietal aroma in musts and wines; -The removal of fermentative aroma according to the wine aging, colloids and protein content; -The adsorption mechanism and modelling of wine aroma compounds onto bentonite. Conclusion The role of bentonite added to settling juices and/or to fining wine was not fully clear. This work collects several studies from authors focusing on the impact of several commercial bentonite samples, used for both juice clarification and wine fining, on the colloids, proteins, polyphenols and aroma compounds of white and red wines. Some parameters of practical value, such as the heat-stability of colloids, the concentration of total and haze-forming proteins, the content of the most relevant varietal and fermentative aroma were assessed to track bentonite effects and to achieve findings that are immediately applicable in the field of oenology.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Milena Lambri*, Dante Marco De Faveri, Donato Colangelo, Fabrizio Torchio

*UCSC

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).