Macrowine 2021
IVES 9 IVES Conference Series 9 Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

Abstract

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine. The exchangeable cations in its lamellar structures strongly influence some properties, like, for instance, the specific surface, the exchange capacity, as well as the adsorption behaviour. The interactions with haze forming proteins, other colloids, as well as aroma compounds and polyphenols would have been to discover as the modulation of wine colloids by an adjuvant severely affects the wine sensory profile. Body Oenologists do not really know on which parameters they have to focus for the choice of the bentonite targeted at gaining both the desired degree of limpidity and stability coupled with the avoiding of undesirable side effects. In this field, the authors have carried out many scientific and technical activities that led to detect: -The proteins targeted by the bentonite; -The endogenous allergenic wine compounds that are removed by bentonite; -The effect of protein origin, content, and pH toward wine colloidal (heat) stability; -The bentonite optimization for red wine fining; -The bentonite side effects on polyphenols and colour; -The interactions with the free- and glycosylated-varietal aroma in musts and wines; -The removal of fermentative aroma according to the wine aging, colloids and protein content; -The adsorption mechanism and modelling of wine aroma compounds onto bentonite. Conclusion The role of bentonite added to settling juices and/or to fining wine was not fully clear. This work collects several studies from authors focusing on the impact of several commercial bentonite samples, used for both juice clarification and wine fining, on the colloids, proteins, polyphenols and aroma compounds of white and red wines. Some parameters of practical value, such as the heat-stability of colloids, the concentration of total and haze-forming proteins, the content of the most relevant varietal and fermentative aroma were assessed to track bentonite effects and to achieve findings that are immediately applicable in the field of oenology.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Milena Lambri*, Dante Marco De Faveri, Donato Colangelo, Fabrizio Torchio

*UCSC

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.