Macrowine 2021
IVES 9 IVES Conference Series 9 Pesticide removal in wine with a physical treatment by molecular sieving

Pesticide removal in wine with a physical treatment by molecular sieving

Abstract

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed. First, it could be a risk of organoleptic defects resulting in a loss of the wine quality and a deep change in its typicity. Second contaminants may be harmful on human health. Beyond these aspects, with the emergence of regulations and commercial requirements, these contaminants can also influence negatively the commercial image of the contaminated wine. Among the exogenous contaminants of the wines, pesticides are the family molecules on which the general public is conversant about. Even if there is no proven toxicological risk associated with the presence of pesticide residues in the wines, this issue is a major concern for consumers and producers. Recently several articles were published in France and indicated a widespread contamination of wines from conventional or organic wines. These articles also highlight the lack of official Maximum Residue Limit for wine. It is also reported that, among the residues detected, many molecules are possible or probable carcinogens, toxic for the development or the reproduction, endocrine disruptors or neurotoxic. Few physical processes are currently available to remove pesticide residues from wine. Based on that observation, the objective of this study was to evaluate the ability of a new physical treatment of wine by molecular sieving with Zeolites to remove pesticide residues. Zeolites are already widely used in water or air treatment applications. Natural Zeolites are low cost abundant resources. These are crystalline aluminosilicates. One of the main characteristics of these solids is the development of regular pore size in the microporous domain. According to their preparation, they have physicochemical properties such as cation exchange, molecular sieving, catalysis, and adsorption. This article describes the selection of a Zeolite able to remove a great variety of pesticides used in vine growing. The results of a treatment trial done on a red wine contaminated with 21 pesticides frequently detected in wines are also presented. All the molecules are removed with an elimination yield higher than 90%. Their removal is influenced by the Zeolite concentration. Our first trials also indicate no influence of such a treatment on red wine key physico-chemical parameters and aromas. Further tests will be performed on other types of wine and the influence of Zeolites treatment on the perception of winetasters will be investigated.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Arnaud Massot*, Céline Franc, Fabrice Meunier, Gilles De Revel, Laurent Riquier, Martine Mietton-Peuchot

*Amarante Process

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?