Macrowine 2021
IVES 9 IVES Conference Series 9 Pesticide removal in wine with a physical treatment by molecular sieving

Pesticide removal in wine with a physical treatment by molecular sieving

Abstract

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed. First, it could be a risk of organoleptic defects resulting in a loss of the wine quality and a deep change in its typicity. Second contaminants may be harmful on human health. Beyond these aspects, with the emergence of regulations and commercial requirements, these contaminants can also influence negatively the commercial image of the contaminated wine. Among the exogenous contaminants of the wines, pesticides are the family molecules on which the general public is conversant about. Even if there is no proven toxicological risk associated with the presence of pesticide residues in the wines, this issue is a major concern for consumers and producers. Recently several articles were published in France and indicated a widespread contamination of wines from conventional or organic wines. These articles also highlight the lack of official Maximum Residue Limit for wine. It is also reported that, among the residues detected, many molecules are possible or probable carcinogens, toxic for the development or the reproduction, endocrine disruptors or neurotoxic. Few physical processes are currently available to remove pesticide residues from wine. Based on that observation, the objective of this study was to evaluate the ability of a new physical treatment of wine by molecular sieving with Zeolites to remove pesticide residues. Zeolites are already widely used in water or air treatment applications. Natural Zeolites are low cost abundant resources. These are crystalline aluminosilicates. One of the main characteristics of these solids is the development of regular pore size in the microporous domain. According to their preparation, they have physicochemical properties such as cation exchange, molecular sieving, catalysis, and adsorption. This article describes the selection of a Zeolite able to remove a great variety of pesticides used in vine growing. The results of a treatment trial done on a red wine contaminated with 21 pesticides frequently detected in wines are also presented. All the molecules are removed with an elimination yield higher than 90%. Their removal is influenced by the Zeolite concentration. Our first trials also indicate no influence of such a treatment on red wine key physico-chemical parameters and aromas. Further tests will be performed on other types of wine and the influence of Zeolites treatment on the perception of winetasters will be investigated.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Arnaud Massot*, Céline Franc, Fabrice Meunier, Gilles De Revel, Laurent Riquier, Martine Mietton-Peuchot

*Amarante Process

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.