Macrowine 2021
IVES 9 IVES Conference Series 9 Pesticide removal in wine with a physical treatment by molecular sieving

Pesticide removal in wine with a physical treatment by molecular sieving

Abstract

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed. First, it could be a risk of organoleptic defects resulting in a loss of the wine quality and a deep change in its typicity. Second contaminants may be harmful on human health. Beyond these aspects, with the emergence of regulations and commercial requirements, these contaminants can also influence negatively the commercial image of the contaminated wine. Among the exogenous contaminants of the wines, pesticides are the family molecules on which the general public is conversant about. Even if there is no proven toxicological risk associated with the presence of pesticide residues in the wines, this issue is a major concern for consumers and producers. Recently several articles were published in France and indicated a widespread contamination of wines from conventional or organic wines. These articles also highlight the lack of official Maximum Residue Limit for wine. It is also reported that, among the residues detected, many molecules are possible or probable carcinogens, toxic for the development or the reproduction, endocrine disruptors or neurotoxic. Few physical processes are currently available to remove pesticide residues from wine. Based on that observation, the objective of this study was to evaluate the ability of a new physical treatment of wine by molecular sieving with Zeolites to remove pesticide residues. Zeolites are already widely used in water or air treatment applications. Natural Zeolites are low cost abundant resources. These are crystalline aluminosilicates. One of the main characteristics of these solids is the development of regular pore size in the microporous domain. According to their preparation, they have physicochemical properties such as cation exchange, molecular sieving, catalysis, and adsorption. This article describes the selection of a Zeolite able to remove a great variety of pesticides used in vine growing. The results of a treatment trial done on a red wine contaminated with 21 pesticides frequently detected in wines are also presented. All the molecules are removed with an elimination yield higher than 90%. Their removal is influenced by the Zeolite concentration. Our first trials also indicate no influence of such a treatment on red wine key physico-chemical parameters and aromas. Further tests will be performed on other types of wine and the influence of Zeolites treatment on the perception of winetasters will be investigated.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Arnaud Massot*, Céline Franc, Fabrice Meunier, Gilles De Revel, Laurent Riquier, Martine Mietton-Peuchot

*Amarante Process

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.