Macrowine 2021
IVES 9 IVES Conference Series 9 Pesticide removal in wine with a physical treatment by molecular sieving

Pesticide removal in wine with a physical treatment by molecular sieving

Abstract

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed. First, it could be a risk of organoleptic defects resulting in a loss of the wine quality and a deep change in its typicity. Second contaminants may be harmful on human health. Beyond these aspects, with the emergence of regulations and commercial requirements, these contaminants can also influence negatively the commercial image of the contaminated wine. Among the exogenous contaminants of the wines, pesticides are the family molecules on which the general public is conversant about. Even if there is no proven toxicological risk associated with the presence of pesticide residues in the wines, this issue is a major concern for consumers and producers. Recently several articles were published in France and indicated a widespread contamination of wines from conventional or organic wines. These articles also highlight the lack of official Maximum Residue Limit for wine. It is also reported that, among the residues detected, many molecules are possible or probable carcinogens, toxic for the development or the reproduction, endocrine disruptors or neurotoxic. Few physical processes are currently available to remove pesticide residues from wine. Based on that observation, the objective of this study was to evaluate the ability of a new physical treatment of wine by molecular sieving with Zeolites to remove pesticide residues. Zeolites are already widely used in water or air treatment applications. Natural Zeolites are low cost abundant resources. These are crystalline aluminosilicates. One of the main characteristics of these solids is the development of regular pore size in the microporous domain. According to their preparation, they have physicochemical properties such as cation exchange, molecular sieving, catalysis, and adsorption. This article describes the selection of a Zeolite able to remove a great variety of pesticides used in vine growing. The results of a treatment trial done on a red wine contaminated with 21 pesticides frequently detected in wines are also presented. All the molecules are removed with an elimination yield higher than 90%. Their removal is influenced by the Zeolite concentration. Our first trials also indicate no influence of such a treatment on red wine key physico-chemical parameters and aromas. Further tests will be performed on other types of wine and the influence of Zeolites treatment on the perception of winetasters will be investigated.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Arnaud Massot*, Céline Franc, Fabrice Meunier, Gilles De Revel, Laurent Riquier, Martine Mietton-Peuchot

*Amarante Process

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.