GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Improved vineyard sampling efficiency using aerial NDVI

Improved vineyard sampling efficiency using aerial NDVI

Abstract

Context and purpose of the study ‐ Random sampling is often considered to be the best protocol for fruit sampling because it is assumed to produce a sample that best represents the vineyard population. However, the time and effort in collecting and processing large random samples can be cost prohibitive. When information about known field variability is available, a spatially‐explicit sampling protocol can use that information to more efficiently sample the vineyard population. A commonly used method for mapping vineyards is normalized difference vegetation index (NDVI) which can be acquired through satellite imagery or overhead flight by plane or drone. This study seeks to improve sampling efficiency by using aerial NDVI vineyard imagery to compute optimal spatially‐explicit sampling protocols that minimize both the number of locations sampled and the time required to sample, while also minimizing potential of human errors during data collection.

Material and methods ‐ NDVI imagery acquired from LANDSAT 7 was used to map spatial variability, at a resolution of 30 by 30 meter pixels, in 24 vineyards located in California’s Central Valley. Three sampling methods, each sampling twenty whole fruit clusters, were compared to determine relative efficacy: 1) Twenty pixels selected by a random number generator (RAND20); 2) Four fixed locations, representing each quadrant, near the edge of the vineyard sampling two pixels at each location (RAND4x2), and; 3) One location, determined by a novel optimization algorithm, sampling three pixels (NDVI3). The vineyards were sampled weekly between verasion and harvest to measure Brix, titratable acidity (TA), pH, and total anthocyanins.

Results – All three sampling methods were highly correlated in pair‐wise comparisons of Brix (R= 0.86 – 0.93), TA (R= 0.93 – 0.96), pH (R= 0.96 – 0.98), and anthocyanins (0.88 – 0.90). Comparing NDVI3 and RAND4x2 to RAND20, deviation from RAND20 measurements was slightly lower in NDVI3 for Brix, TA, and pH, and slightly higher for anthocyanins. These results suggest that vineyard sampling in a single row and an optimally calculated location can produce results similar to more costly random sampling.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Jim MEYERS (1), Nick DOKOOZLIAN (2), Casey RYAN (2), Cella BIONI (2), Justine VANDEN HEUVEL (1)

(1) Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 and Geneva, NY 14456
(2) Viticulture, Chemistry and Enology, E&J Gallo Winery, 600 Yosemite Blvd., Modesto, CA 95354

Contact the author

Keywords

Grapevine, Sampling, NDVI, Optimization, Spatial variability, Efficiency

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Port wine region settling

Cet exposé présente une caractérisation générale de la Région Délimitée du Douro (RDD), productrice des appellations Porto (vins généreux), et Douro pour des vins de qualité VQPRD.

Influence of dehydration and maceration conditions on VOCs composition and olfactory profile of Moscato Bianco passito sweet wine

Among the Vitis vinifera L. cv. Moscato, Moscato Bianco is the oldest and most cultivated one in Europe (1). According to the OIV Focus 2015, Italy is the country with the largest cultivated area of Moscato Bianco with about 12500 hectares (2), that is used to produce well-known wines (i.e., Moscato Passito in Piedmont, Moscato di Trani in Puglia, and Moscatello di Montalcino in Tuscany), mainly obtained from partially dehydrated grapes (1). Different dehydration techniques can strongly modify the chemical compounds of oenological interest, among which Volatile Organic Compounds (VOCs) (1) that are the main responsible for the varietal sensory character of the final wine.

Impact of grapevine leafroll virus infections on vine physiology and the berry transcriptome

Grapevine leafroll associated virus (GLRaV) infections deteriorate vine physiological performance and cause high losses of yield and fruit quality

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.