GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Improved vineyard sampling efficiency using aerial NDVI

Improved vineyard sampling efficiency using aerial NDVI

Abstract

Context and purpose of the study ‐ Random sampling is often considered to be the best protocol for fruit sampling because it is assumed to produce a sample that best represents the vineyard population. However, the time and effort in collecting and processing large random samples can be cost prohibitive. When information about known field variability is available, a spatially‐explicit sampling protocol can use that information to more efficiently sample the vineyard population. A commonly used method for mapping vineyards is normalized difference vegetation index (NDVI) which can be acquired through satellite imagery or overhead flight by plane or drone. This study seeks to improve sampling efficiency by using aerial NDVI vineyard imagery to compute optimal spatially‐explicit sampling protocols that minimize both the number of locations sampled and the time required to sample, while also minimizing potential of human errors during data collection.

Material and methods ‐ NDVI imagery acquired from LANDSAT 7 was used to map spatial variability, at a resolution of 30 by 30 meter pixels, in 24 vineyards located in California’s Central Valley. Three sampling methods, each sampling twenty whole fruit clusters, were compared to determine relative efficacy: 1) Twenty pixels selected by a random number generator (RAND20); 2) Four fixed locations, representing each quadrant, near the edge of the vineyard sampling two pixels at each location (RAND4x2), and; 3) One location, determined by a novel optimization algorithm, sampling three pixels (NDVI3). The vineyards were sampled weekly between verasion and harvest to measure Brix, titratable acidity (TA), pH, and total anthocyanins.

Results – All three sampling methods were highly correlated in pair‐wise comparisons of Brix (R= 0.86 – 0.93), TA (R= 0.93 – 0.96), pH (R= 0.96 – 0.98), and anthocyanins (0.88 – 0.90). Comparing NDVI3 and RAND4x2 to RAND20, deviation from RAND20 measurements was slightly lower in NDVI3 for Brix, TA, and pH, and slightly higher for anthocyanins. These results suggest that vineyard sampling in a single row and an optimally calculated location can produce results similar to more costly random sampling.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Jim MEYERS (1), Nick DOKOOZLIAN (2), Casey RYAN (2), Cella BIONI (2), Justine VANDEN HEUVEL (1)

(1) Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 and Geneva, NY 14456
(2) Viticulture, Chemistry and Enology, E&J Gallo Winery, 600 Yosemite Blvd., Modesto, CA 95354

Contact the author

Keywords

Grapevine, Sampling, NDVI, Optimization, Spatial variability, Efficiency

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

A lower rate of grape berry transpiration delays ripening and reduces flavonoid content

Exposing berries to solar radiation improves most berry composition traits. Many of these effects have been linked to photomorphogenic mechanisms and berry temperature.

Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Recent advancements in genomic sequencing technologies have enabled more detailed and direct studies of DNA methylation, which can help characterise epigenetic variations in plants. The Grapevine Improvement team at the Bragato Research Institute is studying the use of Oxford Nanopore sequencing to identify epigenetic changes associated with environmental differences among clonally-propagated grapevines.

This study involved sequencing DNA from the same Sauvignon Blanc clone, sourced from diverse New Zealand viticultural regions, using the PromethION platform.

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region.

On sample preparation methods for fermentative beverage VOCs profiling by GCxGC-TOFMS

Study the influence of sample preparation methods on the volatile organic compounds (VOCs) profiling for fermentative beverages by GCxGC-TOFMS analysis. METHODS: Five common sample preparation methods were tested on pooled red wine, white wine, cider, and beer. Studied methods were DHS, Liquid-liquid extraction, mSBSE, SPE and SPME. VOCs were analyzed by GCxGC-TOFMS followed by data analysis with ChromaTOF. RESULTS: The volatile organic compounds (VOCs) profiling results were very dependent on the sample preparation methods.

Le réseau français des partenaires de la sélection vigne : un dispositif unique au monde au service de la sauvegarde du patrimoine variétal

The French vine selection partners network is currently made up of 40 regional partners, grouped around IFV (French Institute for Vine and Wine) and INRAE (national research institute for agriculture and environment), whose missions are preservation, selection, and innovation of our varietal diversity. The originality of this device is based on a 3-level organisation: – varietal diversity preservation, with the world reference: the INRAE’s vine genetics resources centre of Vassal-Montpellier (Marseillan, France), the world’s largest ampelographic collection, which includes nearly 6 000 accessions of cultivated Vitis vinifera from 54 countries, as well as rootstocks, interspecific hybrids, wild vines (lambrusques) and wild American and Asian species.