GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Improved vineyard sampling efficiency using aerial NDVI

Improved vineyard sampling efficiency using aerial NDVI

Abstract

Context and purpose of the study ‐ Random sampling is often considered to be the best protocol for fruit sampling because it is assumed to produce a sample that best represents the vineyard population. However, the time and effort in collecting and processing large random samples can be cost prohibitive. When information about known field variability is available, a spatially‐explicit sampling protocol can use that information to more efficiently sample the vineyard population. A commonly used method for mapping vineyards is normalized difference vegetation index (NDVI) which can be acquired through satellite imagery or overhead flight by plane or drone. This study seeks to improve sampling efficiency by using aerial NDVI vineyard imagery to compute optimal spatially‐explicit sampling protocols that minimize both the number of locations sampled and the time required to sample, while also minimizing potential of human errors during data collection.

Material and methods ‐ NDVI imagery acquired from LANDSAT 7 was used to map spatial variability, at a resolution of 30 by 30 meter pixels, in 24 vineyards located in California’s Central Valley. Three sampling methods, each sampling twenty whole fruit clusters, were compared to determine relative efficacy: 1) Twenty pixels selected by a random number generator (RAND20); 2) Four fixed locations, representing each quadrant, near the edge of the vineyard sampling two pixels at each location (RAND4x2), and; 3) One location, determined by a novel optimization algorithm, sampling three pixels (NDVI3). The vineyards were sampled weekly between verasion and harvest to measure Brix, titratable acidity (TA), pH, and total anthocyanins.

Results – All three sampling methods were highly correlated in pair‐wise comparisons of Brix (R= 0.86 – 0.93), TA (R= 0.93 – 0.96), pH (R= 0.96 – 0.98), and anthocyanins (0.88 – 0.90). Comparing NDVI3 and RAND4x2 to RAND20, deviation from RAND20 measurements was slightly lower in NDVI3 for Brix, TA, and pH, and slightly higher for anthocyanins. These results suggest that vineyard sampling in a single row and an optimally calculated location can produce results similar to more costly random sampling.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Jim MEYERS (1), Nick DOKOOZLIAN (2), Casey RYAN (2), Cella BIONI (2), Justine VANDEN HEUVEL (1)

(1) Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 and Geneva, NY 14456
(2) Viticulture, Chemistry and Enology, E&J Gallo Winery, 600 Yosemite Blvd., Modesto, CA 95354

Contact the author

Keywords

Grapevine, Sampling, NDVI, Optimization, Spatial variability, Efficiency

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

High levels of copper and persistent synthetic pesticides in vineyard soils

Downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and bunch rot (Botrytis cinerea) are the most prevalent fungal diseases in viticulture.

Water is the most abundant active compound in wine!

Proton relaxation in model and real wines was investigated by fast field cycling NMR relaxometry. Albeit protons of wine are largely belonging to water molecules, their magnetic relaxation rates actually depend on various physico-chemical parameters related to the state of the wine and to its composition.

From precursor identification to the study of the distribution of 3-methyl-2,4-nonanedione in red wines and spirits

Prematurely aged red wines are marked by intense prune and fig aromatic nuances that dominate the complex bouquet that can be achieved through bottle aging.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.