terclim by ICS banner
IVES 9 IVES Conference Series 9 Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew


One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causinggrapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance. Gene silencing is induced upon exogenous application of dsRNA, which can interfere with protein synthesis. With the aim of identifying new candidate genes to be employed in breeding programs, three novel candidate S genes to downy mildew, VviLBDIf7, VviAS1 and VviB3, have been identified. Candidates’ validation was carried out through RNAi on the susceptible cultivar Pinot noir. Disease severity was estimated by experimental inoculation of P. viticola on leaves sampled at different timepoints after the treatment with dsRNA, while gene expression was evaluated by real time RT-PCR. Successful downregulation of candidate genes resulted in a significant reduction of plants susceptibility to downy mildew, suggesting our candidates as downy mildew S genes, leading to the possibility of employing an RNAi-based strategy as a more sustainable alternative to conventional management strategies.


Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster


Elisabetta Sergi1*, Giuliana Maddalena1, Valentina Ricciardi1, Demetrio Marcianò1, Beatrice Lecchi1, Osvaldo Failla1, Silvia Laura Toffolatti1, Gabriella De Lorenzis1

1 Affliliation Department of Agricultural and Environmental Sciences, via G. Celoria 2, 20133 Milan (Italy)

Contact the author*


S genes, RNAi, gene silencing, Plasmopara viticola, Vitis vinifera


IVES Conference Series | Open GPB | Open GPB 2024


Related articles…

Le cuivre sur raisins et moûts: dosage et intérêts de la mesure

Avec l’accroissement des surfaces viticoles conduites en Bio, la question de l’impact de la présence de résidus de cuivre (seul anti fongique autorisé dans l’UE dans ce cadre Règlementaire) sur le déroulement des fermentations et sur les qualités œnologiques et organoleptiques des vins s’est révélée de plus en plus cruciale.

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine.


The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.

Understanding and managing wine production from different terroirs

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration

Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. Polyphenols are expected to be responsible of several health benefits attributed to kombucha consumption, among other metabolites. This study investigated the impact of tea infusion time and of kombucha “fermentation”, on total phenolic content,