Macrowine 2021
IVES 9 IVES Conference Series 9 Wood from barrique: release of phenolic compounds and permeability to oxygen

Wood from barrique: release of phenolic compounds and permeability to oxygen

Abstract

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine. This tannin acts as essential oxidation mediator since it prevents the straight oxidation of flavan-3-ol units and anthocyanins in wine ageing. On these bases, the release of phenols was monitored in a model solution where oak wood was soaked. The solution was stored in the dark at 15°C for two weeks and then it was recovered. Samples were drawn at different distance and depth from the wood. The release of phenols was evaluated for further two weeks to mimic the use of the barrique. Moreover, the permeability of oak wood to oxygen was investigated in either dry or wet oak wood. Results showed that higher concentration of tannin occurred near to the wood (vertically placed staves) and close to the bottom of the container, whereas higher concentration of phenols was still revealed following to the second soaking of the staves in the deepest layer of the solution but farther away from the wood. According to the experimental data, the release of tannins followed a gradient towards the bottom of the container probably due to the higher density of the solution. The oxygen transmission rate through dry oak wood approached 5 g m-2 day-1 and it decreased 5-6 times when wet wood was considered. The oxygen inside the barrique could be estimated to about 15 g L-1 year-1 considering the barrique full of wine. Such values appeared by far higher than the values suggested in the updated literature and showed the essential role exerted by the wood tannin in protecting the phenols of red wine from oxidation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Antonio Tirelli*, Daniela Fracassetti, Luciano Piergiovanni, Stefano Farris

*DeFENS-Università degli Studi di Milano

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.