Macrowine 2021
IVES 9 IVES Conference Series 9 Light-struck taste in white wine: enological approach for its prevention

Light-struck taste in white wine: enological approach for its prevention

Abstract

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage. Dimethyl disulfide is less volatile, but the perception threshold is still low (30 µg/L) and has an aroma impression of cooked cabbage or onion. However, if light contact, at certain wavelengths, is avoided the reaction does not happen. The riboflavin is released by the yeast and its level up to 100 ppb is considered safe for the appearance and perception of this defect. In this study, fermentation trials of must were carried out by using 15 commercial yeast strains monitoring the fermentation trend, as well. The degradation kinetic was evaluated in both model solution and white wine exposed to light in the absorption wavelengths of RF (370 and 440 nm). Different clarifying agents and adjuvants were tested including different types of bentonite and carbon, and zeolite. Moreover, preliminary tests were performed on provoking the light-struck taste by illuminating a model solution added with gallic and ellagic tannins from oak, gall, grape seeds and skin, and glutathione, ascorbic acid and phenylalanine. The RF production by yeast was confirmed and it is a characteristic strain-dependent. Its concentration ranged 30-50 ppb, except for one strain which released 180 ppb. No correlation between the fermentation rate and the RF production was found. The selection of the yeast strain seemed to play a key role for the final concentration of RF in wine. RF disappeared after only 2 hours of illumination in both model solution and white wine. RF decay followed a 1st order reaction kinetic and the half-life time was doubled in case of white wine. Such a difference could be due to the matrix. Among the clarifying agents, all the bentonites tested (100 g/hL) led to a reduction of RF up to 60%. A lower decrease was found by using the zeolite (30%). The carbon showed the highest decrease of RF (90%). Lower RF reduction in terms of both concentration and decay rate was observed in white wine with all the clarifying agents investigated. However, in white wine, the treatment with carbon was the most effective and the “safe concentration” was reached after 2 hours adding 5 g/hL of carbon. The preliminary results on provoking the light-struck taste suggested the tannin extracts and glutathione could limit the appearance of this defect.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Daniela Fracassetti*, Antonio Tirelli

*Univ. degli Studi di Milano

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.