Macrowine 2021
IVES 9 IVES Conference Series 9 Light-struck taste in white wine: enological approach for its prevention

Light-struck taste in white wine: enological approach for its prevention

Abstract

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage. Dimethyl disulfide is less volatile, but the perception threshold is still low (30 µg/L) and has an aroma impression of cooked cabbage or onion. However, if light contact, at certain wavelengths, is avoided the reaction does not happen. The riboflavin is released by the yeast and its level up to 100 ppb is considered safe for the appearance and perception of this defect. In this study, fermentation trials of must were carried out by using 15 commercial yeast strains monitoring the fermentation trend, as well. The degradation kinetic was evaluated in both model solution and white wine exposed to light in the absorption wavelengths of RF (370 and 440 nm). Different clarifying agents and adjuvants were tested including different types of bentonite and carbon, and zeolite. Moreover, preliminary tests were performed on provoking the light-struck taste by illuminating a model solution added with gallic and ellagic tannins from oak, gall, grape seeds and skin, and glutathione, ascorbic acid and phenylalanine. The RF production by yeast was confirmed and it is a characteristic strain-dependent. Its concentration ranged 30-50 ppb, except for one strain which released 180 ppb. No correlation between the fermentation rate and the RF production was found. The selection of the yeast strain seemed to play a key role for the final concentration of RF in wine. RF disappeared after only 2 hours of illumination in both model solution and white wine. RF decay followed a 1st order reaction kinetic and the half-life time was doubled in case of white wine. Such a difference could be due to the matrix. Among the clarifying agents, all the bentonites tested (100 g/hL) led to a reduction of RF up to 60%. A lower decrease was found by using the zeolite (30%). The carbon showed the highest decrease of RF (90%). Lower RF reduction in terms of both concentration and decay rate was observed in white wine with all the clarifying agents investigated. However, in white wine, the treatment with carbon was the most effective and the “safe concentration” was reached after 2 hours adding 5 g/hL of carbon. The preliminary results on provoking the light-struck taste suggested the tannin extracts and glutathione could limit the appearance of this defect.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Daniela Fracassetti*, Antonio Tirelli

*Univ. degli Studi di Milano

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.