Macrowine 2021
IVES 9 IVES Conference Series 9 Light-struck taste in white wine: enological approach for its prevention

Light-struck taste in white wine: enological approach for its prevention

Abstract

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage. Dimethyl disulfide is less volatile, but the perception threshold is still low (30 µg/L) and has an aroma impression of cooked cabbage or onion. However, if light contact, at certain wavelengths, is avoided the reaction does not happen. The riboflavin is released by the yeast and its level up to 100 ppb is considered safe for the appearance and perception of this defect. In this study, fermentation trials of must were carried out by using 15 commercial yeast strains monitoring the fermentation trend, as well. The degradation kinetic was evaluated in both model solution and white wine exposed to light in the absorption wavelengths of RF (370 and 440 nm). Different clarifying agents and adjuvants were tested including different types of bentonite and carbon, and zeolite. Moreover, preliminary tests were performed on provoking the light-struck taste by illuminating a model solution added with gallic and ellagic tannins from oak, gall, grape seeds and skin, and glutathione, ascorbic acid and phenylalanine. The RF production by yeast was confirmed and it is a characteristic strain-dependent. Its concentration ranged 30-50 ppb, except for one strain which released 180 ppb. No correlation between the fermentation rate and the RF production was found. The selection of the yeast strain seemed to play a key role for the final concentration of RF in wine. RF disappeared after only 2 hours of illumination in both model solution and white wine. RF decay followed a 1st order reaction kinetic and the half-life time was doubled in case of white wine. Such a difference could be due to the matrix. Among the clarifying agents, all the bentonites tested (100 g/hL) led to a reduction of RF up to 60%. A lower decrease was found by using the zeolite (30%). The carbon showed the highest decrease of RF (90%). Lower RF reduction in terms of both concentration and decay rate was observed in white wine with all the clarifying agents investigated. However, in white wine, the treatment with carbon was the most effective and the “safe concentration” was reached after 2 hours adding 5 g/hL of carbon. The preliminary results on provoking the light-struck taste suggested the tannin extracts and glutathione could limit the appearance of this defect.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Daniela Fracassetti*, Antonio Tirelli

*Univ. degli Studi di Milano

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).