Macrowine 2021
IVES 9 IVES Conference Series 9 Light-struck taste in white wine: enological approach for its prevention

Light-struck taste in white wine: enological approach for its prevention

Abstract

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage. Dimethyl disulfide is less volatile, but the perception threshold is still low (30 µg/L) and has an aroma impression of cooked cabbage or onion. However, if light contact, at certain wavelengths, is avoided the reaction does not happen. The riboflavin is released by the yeast and its level up to 100 ppb is considered safe for the appearance and perception of this defect. In this study, fermentation trials of must were carried out by using 15 commercial yeast strains monitoring the fermentation trend, as well. The degradation kinetic was evaluated in both model solution and white wine exposed to light in the absorption wavelengths of RF (370 and 440 nm). Different clarifying agents and adjuvants were tested including different types of bentonite and carbon, and zeolite. Moreover, preliminary tests were performed on provoking the light-struck taste by illuminating a model solution added with gallic and ellagic tannins from oak, gall, grape seeds and skin, and glutathione, ascorbic acid and phenylalanine. The RF production by yeast was confirmed and it is a characteristic strain-dependent. Its concentration ranged 30-50 ppb, except for one strain which released 180 ppb. No correlation between the fermentation rate and the RF production was found. The selection of the yeast strain seemed to play a key role for the final concentration of RF in wine. RF disappeared after only 2 hours of illumination in both model solution and white wine. RF decay followed a 1st order reaction kinetic and the half-life time was doubled in case of white wine. Such a difference could be due to the matrix. Among the clarifying agents, all the bentonites tested (100 g/hL) led to a reduction of RF up to 60%. A lower decrease was found by using the zeolite (30%). The carbon showed the highest decrease of RF (90%). Lower RF reduction in terms of both concentration and decay rate was observed in white wine with all the clarifying agents investigated. However, in white wine, the treatment with carbon was the most effective and the “safe concentration” was reached after 2 hours adding 5 g/hL of carbon. The preliminary results on provoking the light-struck taste suggested the tannin extracts and glutathione could limit the appearance of this defect.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Daniela Fracassetti*, Antonio Tirelli

*Univ. degli Studi di Milano

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.