Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Abstract

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering. In particular, ozone has been suggested as phenolic compounds elicitor, stimulating chemical defense mechanisms such as the synthesis of polyphenols, and as enhancer of cellular membrane and cell walls degradation phenomena. Phenolic compounds are strongly linked to the red wine quality, and their extraction depends on the grape variety, winemaking technique and cell wall degradation. In this work, Vitis vinifera L. cv Nebbiolo and Barbera, chosen for their different anthocyanin profiles, were post-harvest treated for 24 and 72 hours with gaseous ozone (30 µL/L). Untreated samples were used as control with the aim of investigating possible indirect physico-chemical effects of this sanitizing treatment on berry skin phenolic composition. Skin phenolic extractability was assessed during maceration (6, 24, 48, 96, 168 and 240 hours) using a wine-like solution, particularly for total anthocyanins (TA), proanthocyanidins (PRO) and flavanols reactive to vanillin (FRV), and anthocyanin profiles were also determined. Ozone did not affect significantly the final extraction yield of TA, PRO and FRV in Barbera; although anthocyanin extractability was higher in control rather than in ozone-treated samples during the first stages of maceration. Otherwise, Nebbiolo was positively influenced by the treatment because ozone increased significantly TA extraction (68.6, 64.2 and 59.9% for 24 hours ozone-treated berries, 72 hours ozone-treated berries and control samples, respectively). PRO and FRV extractability also showed an increase in both ozone-treated samples compared to the control (+8.6-9.1% for PRO and +7.3-11.7% for FRV). No significant differences were found among treatments for individual anthocyanins, whereas the variety and maceration time strongly affected the anthocyanin profile. In our experimental conditions, ozone enhanced phenolic compounds extractability in Nebbiolo grapes while it did not show significant effects on Barbera. Therefore, the use of ozone as sanitizing agent in the red varieties winemaking process can be considered because it did not negatively affect the extractability of skin anthocyanins and flavanols.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Alessandra Paissoni*, Cristian Carboni, Fabrizio Torchio, Francesco Cravero, Kalliopi Rantsiou, Luca Cocolin, Luca Rolle, Pierre-Louis Teissedre, Simone Giacosa, Susana Río Segade, Vasileios Englezos, Vincenzo Gerbi

*Università di Torino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L
[Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.