Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Abstract

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering. In particular, ozone has been suggested as phenolic compounds elicitor, stimulating chemical defense mechanisms such as the synthesis of polyphenols, and as enhancer of cellular membrane and cell walls degradation phenomena. Phenolic compounds are strongly linked to the red wine quality, and their extraction depends on the grape variety, winemaking technique and cell wall degradation. In this work, Vitis vinifera L. cv Nebbiolo and Barbera, chosen for their different anthocyanin profiles, were post-harvest treated for 24 and 72 hours with gaseous ozone (30 µL/L). Untreated samples were used as control with the aim of investigating possible indirect physico-chemical effects of this sanitizing treatment on berry skin phenolic composition. Skin phenolic extractability was assessed during maceration (6, 24, 48, 96, 168 and 240 hours) using a wine-like solution, particularly for total anthocyanins (TA), proanthocyanidins (PRO) and flavanols reactive to vanillin (FRV), and anthocyanin profiles were also determined. Ozone did not affect significantly the final extraction yield of TA, PRO and FRV in Barbera; although anthocyanin extractability was higher in control rather than in ozone-treated samples during the first stages of maceration. Otherwise, Nebbiolo was positively influenced by the treatment because ozone increased significantly TA extraction (68.6, 64.2 and 59.9% for 24 hours ozone-treated berries, 72 hours ozone-treated berries and control samples, respectively). PRO and FRV extractability also showed an increase in both ozone-treated samples compared to the control (+8.6-9.1% for PRO and +7.3-11.7% for FRV). No significant differences were found among treatments for individual anthocyanins, whereas the variety and maceration time strongly affected the anthocyanin profile. In our experimental conditions, ozone enhanced phenolic compounds extractability in Nebbiolo grapes while it did not show significant effects on Barbera. Therefore, the use of ozone as sanitizing agent in the red varieties winemaking process can be considered because it did not negatively affect the extractability of skin anthocyanins and flavanols.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Alessandra Paissoni*, Cristian Carboni, Fabrizio Torchio, Francesco Cravero, Kalliopi Rantsiou, Luca Cocolin, Luca Rolle, Pierre-Louis Teissedre, Simone Giacosa, Susana Río Segade, Vasileios Englezos, Vincenzo Gerbi

*Università di Torino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.