Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Abstract

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering. In particular, ozone has been suggested as phenolic compounds elicitor, stimulating chemical defense mechanisms such as the synthesis of polyphenols, and as enhancer of cellular membrane and cell walls degradation phenomena. Phenolic compounds are strongly linked to the red wine quality, and their extraction depends on the grape variety, winemaking technique and cell wall degradation. In this work, Vitis vinifera L. cv Nebbiolo and Barbera, chosen for their different anthocyanin profiles, were post-harvest treated for 24 and 72 hours with gaseous ozone (30 µL/L). Untreated samples were used as control with the aim of investigating possible indirect physico-chemical effects of this sanitizing treatment on berry skin phenolic composition. Skin phenolic extractability was assessed during maceration (6, 24, 48, 96, 168 and 240 hours) using a wine-like solution, particularly for total anthocyanins (TA), proanthocyanidins (PRO) and flavanols reactive to vanillin (FRV), and anthocyanin profiles were also determined. Ozone did not affect significantly the final extraction yield of TA, PRO and FRV in Barbera; although anthocyanin extractability was higher in control rather than in ozone-treated samples during the first stages of maceration. Otherwise, Nebbiolo was positively influenced by the treatment because ozone increased significantly TA extraction (68.6, 64.2 and 59.9% for 24 hours ozone-treated berries, 72 hours ozone-treated berries and control samples, respectively). PRO and FRV extractability also showed an increase in both ozone-treated samples compared to the control (+8.6-9.1% for PRO and +7.3-11.7% for FRV). No significant differences were found among treatments for individual anthocyanins, whereas the variety and maceration time strongly affected the anthocyanin profile. In our experimental conditions, ozone enhanced phenolic compounds extractability in Nebbiolo grapes while it did not show significant effects on Barbera. Therefore, the use of ozone as sanitizing agent in the red varieties winemaking process can be considered because it did not negatively affect the extractability of skin anthocyanins and flavanols.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Alessandra Paissoni*, Cristian Carboni, Fabrizio Torchio, Francesco Cravero, Kalliopi Rantsiou, Luca Cocolin, Luca Rolle, Pierre-Louis Teissedre, Simone Giacosa, Susana Río Segade, Vasileios Englezos, Vincenzo Gerbi

*Università di Torino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Influence of toasting oak wood on ellagitannin structures

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).