Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Abstract

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering. In particular, ozone has been suggested as phenolic compounds elicitor, stimulating chemical defense mechanisms such as the synthesis of polyphenols, and as enhancer of cellular membrane and cell walls degradation phenomena. Phenolic compounds are strongly linked to the red wine quality, and their extraction depends on the grape variety, winemaking technique and cell wall degradation. In this work, Vitis vinifera L. cv Nebbiolo and Barbera, chosen for their different anthocyanin profiles, were post-harvest treated for 24 and 72 hours with gaseous ozone (30 µL/L). Untreated samples were used as control with the aim of investigating possible indirect physico-chemical effects of this sanitizing treatment on berry skin phenolic composition. Skin phenolic extractability was assessed during maceration (6, 24, 48, 96, 168 and 240 hours) using a wine-like solution, particularly for total anthocyanins (TA), proanthocyanidins (PRO) and flavanols reactive to vanillin (FRV), and anthocyanin profiles were also determined. Ozone did not affect significantly the final extraction yield of TA, PRO and FRV in Barbera; although anthocyanin extractability was higher in control rather than in ozone-treated samples during the first stages of maceration. Otherwise, Nebbiolo was positively influenced by the treatment because ozone increased significantly TA extraction (68.6, 64.2 and 59.9% for 24 hours ozone-treated berries, 72 hours ozone-treated berries and control samples, respectively). PRO and FRV extractability also showed an increase in both ozone-treated samples compared to the control (+8.6-9.1% for PRO and +7.3-11.7% for FRV). No significant differences were found among treatments for individual anthocyanins, whereas the variety and maceration time strongly affected the anthocyanin profile. In our experimental conditions, ozone enhanced phenolic compounds extractability in Nebbiolo grapes while it did not show significant effects on Barbera. Therefore, the use of ozone as sanitizing agent in the red varieties winemaking process can be considered because it did not negatively affect the extractability of skin anthocyanins and flavanols.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Alessandra Paissoni*, Cristian Carboni, Fabrizio Torchio, Francesco Cravero, Kalliopi Rantsiou, Luca Cocolin, Luca Rolle, Pierre-Louis Teissedre, Simone Giacosa, Susana Río Segade, Vasileios Englezos, Vincenzo Gerbi

*Università di Torino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.