Macrowine 2021
IVES 9 IVES Conference Series 9 Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

Abstract

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure. Therefore, the binding of ethyl esters to a wine protein has been analyzed by studying the modifications of the protein structure (which indicates protein-ligand interactions) by Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy (2). The effects induced by the addition of ethyl esters (from hexanoate to dodecanoate) on the secondary structure and stability of a purified Thaumatin like-protein (VVTL1), the most abundant wine protein, was studied in a wine model solution (12% ethanol, 5 g/l mesotartaric acid, pH 3.2). As demonstrated by UV-photo denaturation assays (20 repeated consecutive scans in the far UV-region of protein), the secondary structure of VVTL1 was only slightly affected by the presence of the selected aroma esters, but protein stability was increased by the addiction of octanoate, decanoate and dodecanoate ethyl esters. On the contrary, in the presence of ethyl hexanoate protein stability decreases. These data were further confirmed by SRCD thermal denaturation assay. The results here reported demonstrate that the content of ordered structure and the protein photo and thermal stability of the main wine protein VVTL1 is modified by ethyl esters of different chain length, indicating the existence of a binding phenomenon. Therefore esters interactions with proteins may occur in wine and that this fact can modulate both the effect of bentonite treatments and the perception of the wine aroma.

(1) Vincenzi et al., 2015. J. Agric. Food Chem., 63, 2314 (2) Hussain R. et al., 2012. Spectroscopic Analysis: Synchrotron Radiation Circular Dichroism, in: Comprehensive Chirality, 8, Elsevier, Amsterdam, pp. 438-448.

ACKNOWLEDGMENTS We thank Diamond Light Source for access to beamline B23 (SM8034) that contributed to the results presented here. This research has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 226716.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Andrea Curioni*, Diana Gazzola, Mattia Di Gaspero, Paolo Ruzza, Simone Vincenzi

*Università di Padova

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Attractiveness and sweetness of red wines: Synergies between American oak barrels and mannoproteins

In partnership with a Bordeaux property wanting to improve the quality of its second wine, the effects of two factors, American oak barrels and mannoproteins were studied. Their impact on the attractiveness and sweetness of wines were characterized during two successive vintages (2012 and 2013). Vinification took place with a homogeneous batch of Cabernet Sauvignon. The wine was then divided up into various groups of five barrels of French and American oak, new or reused. Analyses of volatile and non-volatile wood compounds were undertaken at four months and eight months of wood ageing, by LC-MS and GC-MS.

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.