Macrowine 2021
IVES 9 IVES Conference Series 9 Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour assessment of port wines using colorimetric and spectrophotometric methods

Abstract

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments (including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules (particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different. The precise measurement of wine colour is usually done using molecular (UV-VIS) spectrophotometric methods. In the current official (OIV) method, the transmittance spectrum of a particular sample is measured and used to calculate CIE L*a*b* parameters, which define a single (predominant) colour for a particular wine. Reflectance colorimetry is an alternative well-established method for measuring colour in foodstuffs, which can also be used in transparent samples (such as wines) as long as a reflective background is used. In this work, a reflectance colorimeter was used to measure CIE L*a*b* colour parameters of Port wine samples of different categories at different depths, in Petri dishes. The obtained results were compared with the parameters obtained using the OIV method. Representative profiles of Lightness (L*), Hue (H*) and Chroma (C*) vs. wine depths were obtained using Port wine samples from different categories and ages. Wines from the same category exhibited similar colour (depth) profiles, with Tawny-styled wines showing a more linear profile than Ruby-styled wines regarding the L* and H* parameters. Good correlations between the colorimetric and OIV methods were obtained for the L* (Ruby:R >= 0.97; Tawny:R > 0.86) and H* parameters (Ruby:R >= 0.90; Tawny >= 0.91) with the C* parameter giving inferior results, particularly in Tawny-style wines (Ruby:R >= 0.87; Tawny >= 0.29). The results suggest the colorimetric method can be used as an alternative to the OIV method for estimating the L* and H* parameters (the most important for wine colour definition), being quicker and more informative.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francisco Silva*, Bento Amaral, Cristina Silva, Francisco Campos, Manuel Ferreira, Natalia Ribeiro, Tomas Simões

*Escola Sup. Biotecnologia – UCP

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

Evaluating South African Chenin blanc wine styles using an LC-MS screening method

Sorting Chenin blanc is one of the most important white wine cultivars in South Africa. It has received a lot of attention and accolades in the past years and more research than ever is dedicated to this versatile cultivar. According to the Chenin blanc association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded
(RRU), and Rich and Ripe Wooded (RRW). They are traditionally established with the aid of expert sensory evaluation, but the cost and the (subjective) human factor are aspects to be taken into account. A more objective and possibly robust way of assessing and attributing these styles can be the use of chemical analysis.

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.