Macrowine 2021
IVES 9 IVES Conference Series 9 Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour assessment of port wines using colorimetric and spectrophotometric methods

Abstract

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments (including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules (particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different. The precise measurement of wine colour is usually done using molecular (UV-VIS) spectrophotometric methods. In the current official (OIV) method, the transmittance spectrum of a particular sample is measured and used to calculate CIE L*a*b* parameters, which define a single (predominant) colour for a particular wine. Reflectance colorimetry is an alternative well-established method for measuring colour in foodstuffs, which can also be used in transparent samples (such as wines) as long as a reflective background is used. In this work, a reflectance colorimeter was used to measure CIE L*a*b* colour parameters of Port wine samples of different categories at different depths, in Petri dishes. The obtained results were compared with the parameters obtained using the OIV method. Representative profiles of Lightness (L*), Hue (H*) and Chroma (C*) vs. wine depths were obtained using Port wine samples from different categories and ages. Wines from the same category exhibited similar colour (depth) profiles, with Tawny-styled wines showing a more linear profile than Ruby-styled wines regarding the L* and H* parameters. Good correlations between the colorimetric and OIV methods were obtained for the L* (Ruby:R >= 0.97; Tawny:R > 0.86) and H* parameters (Ruby:R >= 0.90; Tawny >= 0.91) with the C* parameter giving inferior results, particularly in Tawny-style wines (Ruby:R >= 0.87; Tawny >= 0.29). The results suggest the colorimetric method can be used as an alternative to the OIV method for estimating the L* and H* parameters (the most important for wine colour definition), being quicker and more informative.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francisco Silva*, Bento Amaral, Cristina Silva, Francisco Campos, Manuel Ferreira, Natalia Ribeiro, Tomas Simões

*Escola Sup. Biotecnologia – UCP

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.