Macrowine 2021
IVES 9 IVES Conference Series 9 Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour assessment of port wines using colorimetric and spectrophotometric methods

Abstract

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments (including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules (particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different. The precise measurement of wine colour is usually done using molecular (UV-VIS) spectrophotometric methods. In the current official (OIV) method, the transmittance spectrum of a particular sample is measured and used to calculate CIE L*a*b* parameters, which define a single (predominant) colour for a particular wine. Reflectance colorimetry is an alternative well-established method for measuring colour in foodstuffs, which can also be used in transparent samples (such as wines) as long as a reflective background is used. In this work, a reflectance colorimeter was used to measure CIE L*a*b* colour parameters of Port wine samples of different categories at different depths, in Petri dishes. The obtained results were compared with the parameters obtained using the OIV method. Representative profiles of Lightness (L*), Hue (H*) and Chroma (C*) vs. wine depths were obtained using Port wine samples from different categories and ages. Wines from the same category exhibited similar colour (depth) profiles, with Tawny-styled wines showing a more linear profile than Ruby-styled wines regarding the L* and H* parameters. Good correlations between the colorimetric and OIV methods were obtained for the L* (Ruby:R >= 0.97; Tawny:R > 0.86) and H* parameters (Ruby:R >= 0.90; Tawny >= 0.91) with the C* parameter giving inferior results, particularly in Tawny-style wines (Ruby:R >= 0.87; Tawny >= 0.29). The results suggest the colorimetric method can be used as an alternative to the OIV method for estimating the L* and H* parameters (the most important for wine colour definition), being quicker and more informative.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francisco Silva*, Bento Amaral, Cristina Silva, Francisco Campos, Manuel Ferreira, Natalia Ribeiro, Tomas Simões

*Escola Sup. Biotecnologia – UCP

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life.