Macrowine 2021
IVES 9 IVES Conference Series 9 Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour assessment of port wines using colorimetric and spectrophotometric methods

Abstract

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments (including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules (particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different. The precise measurement of wine colour is usually done using molecular (UV-VIS) spectrophotometric methods. In the current official (OIV) method, the transmittance spectrum of a particular sample is measured and used to calculate CIE L*a*b* parameters, which define a single (predominant) colour for a particular wine. Reflectance colorimetry is an alternative well-established method for measuring colour in foodstuffs, which can also be used in transparent samples (such as wines) as long as a reflective background is used. In this work, a reflectance colorimeter was used to measure CIE L*a*b* colour parameters of Port wine samples of different categories at different depths, in Petri dishes. The obtained results were compared with the parameters obtained using the OIV method. Representative profiles of Lightness (L*), Hue (H*) and Chroma (C*) vs. wine depths were obtained using Port wine samples from different categories and ages. Wines from the same category exhibited similar colour (depth) profiles, with Tawny-styled wines showing a more linear profile than Ruby-styled wines regarding the L* and H* parameters. Good correlations between the colorimetric and OIV methods were obtained for the L* (Ruby:R >= 0.97; Tawny:R > 0.86) and H* parameters (Ruby:R >= 0.90; Tawny >= 0.91) with the C* parameter giving inferior results, particularly in Tawny-style wines (Ruby:R >= 0.87; Tawny >= 0.29). The results suggest the colorimetric method can be used as an alternative to the OIV method for estimating the L* and H* parameters (the most important for wine colour definition), being quicker and more informative.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francisco Silva*, Bento Amaral, Cristina Silva, Francisco Campos, Manuel Ferreira, Natalia Ribeiro, Tomas Simões

*Escola Sup. Biotecnologia – UCP

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.