Macrowine 2021
IVES 9 IVES Conference Series 9 Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour assessment of port wines using colorimetric and spectrophotometric methods

Abstract

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments (including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules (particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different. The precise measurement of wine colour is usually done using molecular (UV-VIS) spectrophotometric methods. In the current official (OIV) method, the transmittance spectrum of a particular sample is measured and used to calculate CIE L*a*b* parameters, which define a single (predominant) colour for a particular wine. Reflectance colorimetry is an alternative well-established method for measuring colour in foodstuffs, which can also be used in transparent samples (such as wines) as long as a reflective background is used. In this work, a reflectance colorimeter was used to measure CIE L*a*b* colour parameters of Port wine samples of different categories at different depths, in Petri dishes. The obtained results were compared with the parameters obtained using the OIV method. Representative profiles of Lightness (L*), Hue (H*) and Chroma (C*) vs. wine depths were obtained using Port wine samples from different categories and ages. Wines from the same category exhibited similar colour (depth) profiles, with Tawny-styled wines showing a more linear profile than Ruby-styled wines regarding the L* and H* parameters. Good correlations between the colorimetric and OIV methods were obtained for the L* (Ruby:R >= 0.97; Tawny:R > 0.86) and H* parameters (Ruby:R >= 0.90; Tawny >= 0.91) with the C* parameter giving inferior results, particularly in Tawny-style wines (Ruby:R >= 0.87; Tawny >= 0.29). The results suggest the colorimetric method can be used as an alternative to the OIV method for estimating the L* and H* parameters (the most important for wine colour definition), being quicker and more informative.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francisco Silva*, Bento Amaral, Cristina Silva, Francisco Campos, Manuel Ferreira, Natalia Ribeiro, Tomas Simões

*Escola Sup. Biotecnologia – UCP

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.