Macrowine 2021
IVES 9 IVES Conference Series 9 Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Abstract

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way. The oldest of these wines dates back to 1988. The role of lees and ageing in a low-pH (<=3) as in Champagne leads to several modifications of wine composition1. Lees are known to affect wine redox potential and liberate protein and free amino acids. These conditions combined with extended ageing result in the required environment for the Maillard chemical reaction whose aromatic molecules including sulphur, oxygen and nitrogen heterocycles (such as thiazole, furan and pyrazines derivatives) may have a sensory impact on wine2. The 50 mono-varietal wines aged from 1 to 28 years, have been provided by Veuve Clicquot Ponsardin wherein some wines aromatic heterocycles were determined by the SPME-GC-MS method3. To identify any possible correlation between these aromatic compounds end their precursors, 21 amino acids were determined by HPLC-fluorimetry method4. The most interesting result highlights a strong correlation between certain heterocycle concentrations and age of wine. That suggests these compounds as potential indicators of lees ageing. As such they can be considered as potential key compounds of the bouquet of aged Champagnes. The principle outcome of these assays has revealed for the first time in Champagne base wines that aromatic heterocycles concentration are correlated with wine age.

1. Alexandre, H. & Guilloux-Benatier, M. Yeast autolysis in sparkling wine – A review. Aust. J. Grape Wine Res. 12, 119–127 (2006). 2. Marchand, S., De Revel, G. & Bertrand, A. Approaches to wine aroma: Release of aroma compounds from reactions between cysteine and carbonyl compounds in wine. J. Agric. Food Chem. 48, 4890–4895 (2000). 3. Burin, V. M., Marchand, S., De Revel, G. & Bordignon-Luiz, M. T. Development and validation of method for heterocyclic compounds in wine: Optimization of HS-SPME conditions applying a response surface methodology. Talanta 117, 87–93 (2013). 4. Pripis-Nicolau, L., De Revel, G., Marchand, S., Beloqui, A. A. & Bertrand, A. Automated HPLC method for the measurement of free amino acids including cysteine in musts and wines; first applications. J. Sci. Food Agric. 81, 731–738 (2001).

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Nicolas Le Menn*, Delphine Laborde, DEMARVILLE Dominique, Gilles De Revel, Richard Marchal, Stéphanie Marchand

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.