Macrowine 2021
IVES 9 IVES Conference Series 9 Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Abstract

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way. The oldest of these wines dates back to 1988. The role of lees and ageing in a low-pH (<=3) as in Champagne leads to several modifications of wine composition1. Lees are known to affect wine redox potential and liberate protein and free amino acids. These conditions combined with extended ageing result in the required environment for the Maillard chemical reaction whose aromatic molecules including sulphur, oxygen and nitrogen heterocycles (such as thiazole, furan and pyrazines derivatives) may have a sensory impact on wine2. The 50 mono-varietal wines aged from 1 to 28 years, have been provided by Veuve Clicquot Ponsardin wherein some wines aromatic heterocycles were determined by the SPME-GC-MS method3. To identify any possible correlation between these aromatic compounds end their precursors, 21 amino acids were determined by HPLC-fluorimetry method4. The most interesting result highlights a strong correlation between certain heterocycle concentrations and age of wine. That suggests these compounds as potential indicators of lees ageing. As such they can be considered as potential key compounds of the bouquet of aged Champagnes. The principle outcome of these assays has revealed for the first time in Champagne base wines that aromatic heterocycles concentration are correlated with wine age.

1. Alexandre, H. & Guilloux-Benatier, M. Yeast autolysis in sparkling wine – A review. Aust. J. Grape Wine Res. 12, 119–127 (2006). 2. Marchand, S., De Revel, G. & Bertrand, A. Approaches to wine aroma: Release of aroma compounds from reactions between cysteine and carbonyl compounds in wine. J. Agric. Food Chem. 48, 4890–4895 (2000). 3. Burin, V. M., Marchand, S., De Revel, G. & Bordignon-Luiz, M. T. Development and validation of method for heterocyclic compounds in wine: Optimization of HS-SPME conditions applying a response surface methodology. Talanta 117, 87–93 (2013). 4. Pripis-Nicolau, L., De Revel, G., Marchand, S., Beloqui, A. A. & Bertrand, A. Automated HPLC method for the measurement of free amino acids including cysteine in musts and wines; first applications. J. Sci. Food Agric. 81, 731–738 (2001).

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Nicolas Le Menn*, Delphine Laborde, DEMARVILLE Dominique, Gilles De Revel, Richard Marchal, Stéphanie Marchand

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).