Macrowine 2021
IVES 9 IVES Conference Series 9 Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Abstract

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way. The oldest of these wines dates back to 1988. The role of lees and ageing in a low-pH (<=3) as in Champagne leads to several modifications of wine composition1. Lees are known to affect wine redox potential and liberate protein and free amino acids. These conditions combined with extended ageing result in the required environment for the Maillard chemical reaction whose aromatic molecules including sulphur, oxygen and nitrogen heterocycles (such as thiazole, furan and pyrazines derivatives) may have a sensory impact on wine2. The 50 mono-varietal wines aged from 1 to 28 years, have been provided by Veuve Clicquot Ponsardin wherein some wines aromatic heterocycles were determined by the SPME-GC-MS method3. To identify any possible correlation between these aromatic compounds end their precursors, 21 amino acids were determined by HPLC-fluorimetry method4. The most interesting result highlights a strong correlation between certain heterocycle concentrations and age of wine. That suggests these compounds as potential indicators of lees ageing. As such they can be considered as potential key compounds of the bouquet of aged Champagnes. The principle outcome of these assays has revealed for the first time in Champagne base wines that aromatic heterocycles concentration are correlated with wine age.

1. Alexandre, H. & Guilloux-Benatier, M. Yeast autolysis in sparkling wine – A review. Aust. J. Grape Wine Res. 12, 119–127 (2006). 2. Marchand, S., De Revel, G. & Bertrand, A. Approaches to wine aroma: Release of aroma compounds from reactions between cysteine and carbonyl compounds in wine. J. Agric. Food Chem. 48, 4890–4895 (2000). 3. Burin, V. M., Marchand, S., De Revel, G. & Bordignon-Luiz, M. T. Development and validation of method for heterocyclic compounds in wine: Optimization of HS-SPME conditions applying a response surface methodology. Talanta 117, 87–93 (2013). 4. Pripis-Nicolau, L., De Revel, G., Marchand, S., Beloqui, A. A. & Bertrand, A. Automated HPLC method for the measurement of free amino acids including cysteine in musts and wines; first applications. J. Sci. Food Agric. 81, 731–738 (2001).

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Nicolas Le Menn*, Delphine Laborde, DEMARVILLE Dominique, Gilles De Revel, Richard Marchal, Stéphanie Marchand

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel
(Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002).

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.