Macrowine 2021
IVES 9 IVES Conference Series 9 Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Abstract

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way. The oldest of these wines dates back to 1988. The role of lees and ageing in a low-pH (<=3) as in Champagne leads to several modifications of wine composition1. Lees are known to affect wine redox potential and liberate protein and free amino acids. These conditions combined with extended ageing result in the required environment for the Maillard chemical reaction whose aromatic molecules including sulphur, oxygen and nitrogen heterocycles (such as thiazole, furan and pyrazines derivatives) may have a sensory impact on wine2. The 50 mono-varietal wines aged from 1 to 28 years, have been provided by Veuve Clicquot Ponsardin wherein some wines aromatic heterocycles were determined by the SPME-GC-MS method3. To identify any possible correlation between these aromatic compounds end their precursors, 21 amino acids were determined by HPLC-fluorimetry method4. The most interesting result highlights a strong correlation between certain heterocycle concentrations and age of wine. That suggests these compounds as potential indicators of lees ageing. As such they can be considered as potential key compounds of the bouquet of aged Champagnes. The principle outcome of these assays has revealed for the first time in Champagne base wines that aromatic heterocycles concentration are correlated with wine age.

1. Alexandre, H. & Guilloux-Benatier, M. Yeast autolysis in sparkling wine – A review. Aust. J. Grape Wine Res. 12, 119–127 (2006). 2. Marchand, S., De Revel, G. & Bertrand, A. Approaches to wine aroma: Release of aroma compounds from reactions between cysteine and carbonyl compounds in wine. J. Agric. Food Chem. 48, 4890–4895 (2000). 3. Burin, V. M., Marchand, S., De Revel, G. & Bordignon-Luiz, M. T. Development and validation of method for heterocyclic compounds in wine: Optimization of HS-SPME conditions applying a response surface methodology. Talanta 117, 87–93 (2013). 4. Pripis-Nicolau, L., De Revel, G., Marchand, S., Beloqui, A. A. & Bertrand, A. Automated HPLC method for the measurement of free amino acids including cysteine in musts and wines; first applications. J. Sci. Food Agric. 81, 731–738 (2001).

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Nicolas Le Menn*, Delphine Laborde, DEMARVILLE Dominique, Gilles De Revel, Richard Marchal, Stéphanie Marchand

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.