GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Disease‐induced alterations in the reflectance spectrum of grape leaves

Disease‐induced alterations in the reflectance spectrum of grape leaves

Abstract

Context and purpose of the study ‐ Phytopathogenic diseases impact the development and yield of grapevines, resulting in economical, social and environmental losses. Sick plants have their metabolism changed, leading to alterations in their reflectance spectra. Little is known on these alterations, and a better knowledge could be used in the development of sensors able to detect diseases through fast, non‐ destructive techniques. The present study was aimed at detecting spectral changes on the reflectance spectra of vines of cv. Cabernet Sauvignon, with early symptoms of downy mildew, powdery mildew, black‐ foot and Petri disease, describing the spectral domains where alterations are measurable with respect to healthy control vines. This information can be used to the development of low‐cost devices which can perform real‐time field measurements to early assessment of vineyard health status.

Material and methods ‐ Plants of Cabernet Sauvignon grown in pots and kept in a greenhouse were inoculated with the pathogens causing mildew, powdery mildew, black‐foot and Petri disease. In early stages of disease development, reflectance measurements were performed using a FieldSpec 3 spectroradiometer, which were compared with data from healthy plants. The investigation began with discriminant analysis, which revealed that symptomatic plants are indeed separated from the control ones. Reflectance spectra were therefore further investigated and alterations on the shape of the spectra, characteristic of each disease, were looked for. The disease descriptors were based on ratios between spectral features internal to a spectrum, a procedure which allowed the derivation of parameters intrinsic to each disease.

Results ‐ A set of thresholds, which are the intensity ratios of reflectance at selected wavelengths, was derived for the studied diseases. The selected wavelength ratios were 443/496, 443/573, 443/695, 443/1900, 496/573, 496/695, 516/1900, and 1900/2435 (values in nanometers), for which the spectra from symptomatic plants present shape changes of as much as 20% in reflectance with respect to healthy plants. The observed spectral deformations are larger for black‐foot and powdery mildew, but some wavelength ratios are also indicators of downy mildew and Petri disease. Data from near‐infrared are in general more useful, compared with measurements at 1900 and 2435nm.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Pâmela PITHAN (1), Lucas GARRIDO (3), Diniz ARRUDA (1), Adriane THUM (1,2), Rosemary HOFF (3), Jorge DUCATI (1)

(1) Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, Brazil
(2) Universidade do Vale do Rio dos Sinos, Av. Unisinos 950, 93020-190 São Leopoldo, Brazil
(3) Empresa Brasileira de Pesquisa Agropecuária, R. Livramento 515, 95701-008 Bento Gonçalves, Brazil

Contact the author

Keywords

Grapevine diseases, leaf reflectance, spectroradiometry, disease detection

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

How to improve the success of dead vine replacement: insights into the impacts of young plant‘s environment 

Grapevine faces multiple biotic and/or abiotic stresses, which are interrelated. Depending on their incidence, they can have a negative impact on the development and production of the plant, but also on its longevity, leading to vine dieback. One of the consequences of vine dieback on production is the increased replacement rate of dead or missing vines within a parcel.

Towards a relationship between institutional clonal selection, mass selection and private clonal selection of grapevine cultivars

Each grape cultivar is composed of a population of individuals that are genetically different. Clonal selection has allowed the purification and improvement of the global quality

Identifying New Zealand Sauvignon blanc terroirs

The concept of terroir is well established in the ‘old world’ wine industry but its use is still relatively new in New Zealand. Marlborough Sauvignon blanc has become a benchmark

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.

Effects of Silver Thiosulphate and Salicylic Acid on the long-term maintenance of the embryogenic callus of Vitis vinifera

New Plant Breeding Techniques (NPBTs) have the potential to revolutionize the genetic improvement of grapevine. However, the practical application of these techniques is limited by several challenges, such as the difficulty in generating embryogenic calluses, maintaining their competence during in vitro cultivation, and regenerating plants without defects. To overcome these challenges, we conducted a study to test the effect of two treatments on callus cultures derived from different grapevine varieties, with and without embryogenic competence. The tested substances were Silver Thiosulphate (STS) an ethylene inhibitor, and Salicylic Acid (SA), an elicitor with different effects depending on the concentration of use beyond the ethylene inhibitor activity.