Macrowine 2021
IVES 9 IVES Conference Series 9 Novel contribution to the study of mouth-feel properties in wines

Novel contribution to the study of mouth-feel properties in wines

Abstract

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed. Six odorless wine fractions containing groups of compounds with different sensory and chemical properties were isolated. Eighteen fractions (6 fractions x 3 wines) were firstly classified in groups attending to their in-mouth similarities and groups were described (labelled sorting task) by a panel of experts. This task allowed identifying 14 fractions with different in-mouth properties. These odorless fractions were further submitted to a task of vocabulary generation (repertory grid). Terms generated in both sorting task and repertory grid were combined to form categories through a triangulation process. The final list of 23 terms (4 related to taste and 18 to mouth-feel) was employed for the sensory characterization of the 14 fractions by Rate-all-that-apply method with 30 wine experts. ANOVA analyses calculated on the 23 attributes showed significant effects for 20 of them, which confirmed the discrimination ability of the terms and sensory differences among fractions. Further PCA analysis followed by cluster analysis showed 5 groups of fractions with different in-mouth properties: cluster 1 (5 fractions) characterized with terms: sweet, watery, silky, fleshy, oily and greasy; cluster 2 (4 fractions): burning, hot and bitter; cluster 3 (3 fractions): dry, coarse and granular; cluster 4 (1 fraction): dusty and 5 (1 fraction) bitter, sour, puckering, persistent and sharp.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Purificación Fernández-Zurba*, Dominique Valentin, Jose Avizcuri, Maria Pilar Saenz-Navaja, Vicente Ferreira

*Universidad de La Rioja

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.