Macrowine 2021
IVES 9 IVES Conference Series 9 Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Abstract

Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines. But most of the time the measured concentration is largely under legal limit (copper < 1 mg/l) with an average of 0 à 0,2 mg/l of CU, this has the consequence to let consider the wine producers that they have no problem. Unfortunately they are wrong ! This lecture will demonstrate that a major part of musts contain a copper concentration over 0,5 mg/l. The gap between must and wine is majorly do to the alcoholic fermentation that eliminate partially copper. This high concentration has a direct impact on winemaking and final wines quality. Copper is a known antiseptic, and it can have some toxic effects on micro-organisms (this effect is strain / species dependant). This leads to fermentations problems from slugglish to suck AF or difficult MLF. In addition heavy metals have an impact that can cause over 50% of “destruction” of certain aromatic compounds of grapes such as free thiols. Copper is also taking an active part in oxidation mechanisms that forms quinones and conduct to an increase of yellow length in wines colour. It increases bitterness of wines and also limit SO2 action ( copper is trapping free fraction). As for conclude this lecture will demonstrate the interest and impact PVP/PVI (only or in formulation) during winemaking as a solution to heavy metal presence such as copper. 

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Christophe Morge*, Céline Sparrow

*SOFRALAB

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.